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Introduction
Since the development of high-throughput
technologies for probing the genome re-
searchers have been interested in finding dif-
ferences across groups that could potential-
ly explain the observable phenotypic differ-
ences. The first step being developing meth-
ods for large-scale hypothesis generation. The
traditional tools have focused on the known
transcriptome and are highly dependent on
existing annotation. Frazee et al (Biostatis-
tics 2014) developed a statistical framework
to find candidate Differentially Expressed Re-
gions (DERs) without relying on annotation
that produced sensible results. We have imple-
mented a faster version of this approach in or-
der to handle larger data sets: up to a few hun-
dred samples. The software can also quickly
produce gene/exon table counts for differential
expression analysis at feature resolution using
DESeq, edgeR, and other similar packages.

DERfinder

Figure 1. (A) Coverage boxplots for 3 different base
pairs. (B) F-statistics curve with candidate DERs in color.
(C) Coverage curves for the 5 sample groups. (D) Known
annotation.

F-statistics are calculated at each base pair.
Contiguous base pairs with F-statistics above
a cutoff are considered a candidate differential-
ly expressed region (DER).

Figure 2. Relationships between the main functions in
derfinder and results produced.

For base pairs passing the filter, two nested
models are fitted adjusting for confounders and
batch effects. A F-statistic testing for signifi-
cance of the coefficients of interest (group in
this case) is calculated. Candidate DERs are
defined (Fig 1B) and their area is compared
against areas from null regions (obtained via
permutations) to calculate empirical p-values.
Q-values, which control the FDR, are used to
determine significance.

Results
Public data sets with high (Stem) and low
(Hippo) group differences, and a time course
data set (Snyder) were used to demonstrate
derfinder.

Table 1. Number of candidate DERs found.

Table 2. Wall time and memory used to produce gene
count tables from BAM files by derfinder, HTSeq, and
summarizeOverlaps from GenomicRanges. Resources
used were adjusted by the number of cores used. Anno-
tation used: UCSC hg19 knownGene.

Figure 3. For Hippo data set,
overlap (minimum 20 bp)
between the 2595 significant
candidate DERs and UCSC
hg19 known annotation ba-
sic features categorized into
exons, introns, or intergenic
features.

Conclusions
derfinder can readily handle different types of
data sets with sample sizes up to several hun-
dred. The number of candidate DERs is sen-
sible to the F-statistics cutoff used (Fig 1 B),
yet derfinder finds similar numbers of signifi-
cant candidate DERs (Table 1). The latter ones
have a tendency to overlap known exons (Fig
3), with variability due to the underlying biolog-
ical mechanism under study.

derfinder produces gene/exon count tables
much faster than the most commonly used
competitors, at the expense of higher (yet fea-
sible) memory requirements (Table 2).
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