

Introduction

Differential expression analysis from RNA-seq data can be done with three types of methods:

- annotate-then-identify (DESeq, edgeR),
- 2. assemble-then-identify (Cuffdiff2),
- 3. identify-then-annotate Frazee et al (2013), derfinder.

We have a unique large data set (59 samples) where we can compare these methods. Running *derfinder* involves:

- Aligning with TopHat: 20 cores, ~12 hrs per sample
- Merging samples by chromosome (250 mi x 59 max)
- Filtering by row statistics (e.x. at least 1 column > 5)
- HHM by chunks due to memory limits (by 100 000)
- P-values by permutations (10-20 per chr)

Objectives

- Compare leading methods.
- Improve *derfinder*.

Tools used

The project has been a combination of reducing hard disk requirements (e.x. ~2TB down to 317 GB), reducing memory load (e.x. 75 to 2.5 GB), reducing input/output (e.x. storing medians instead of re-calculating per permutation), and reducing wallclock computing time (e.x. 9 to 3 hrs).

- Extensive use of *enigma2* for parallelizing when possible.
- IRanges for reducing the memory load.
- Rsamtools for faster processing of alignment files.
- Interactive visualization (D3) via *clickme*.

Differential expression RNA-seq analysis with a large data set from brain samples Leonardo Collado-Torres¹, Alyssa Frazee¹, Andrew Jaffe², Sarven Sabunciyan³, Jeffrey T. Leek¹ ¹Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, ²Department of Biostatistics at JHSPH and Lieber Institute for Brain Development,

³Department of Pediatrics, The Johns Hopkins School of Medicine

Order of execution relationships between the main tools.

Results so far

Viewing rcount for gene XLOC_175275 via ballgownR

Color code: bipolar, schizophrenia, control, depression.

		TCONS_00	ONS_00297700		TCONS_00297701		
		16		17		e 18	
		25		26		27	
		34		35		36	
		43		44		45	
		52		53		54	
		8		9		e bor	Ċ
153.00							
100.00							
50.00							
0.00		<u>-</u>					
-30.90	0.404	24 520 20		20 400	24 520 500	24 520	_
31,53	9,184	31,039,30	<i>i</i> 0 31,5	539,400	31,539,500	31,539	, (
153.00							
100.00							
0.00			_				
-30.90	9184	3153930	0 31!	539400	31539500	31539	6

To do

- facts from results.

References

Work supported by the Stanley Medical Research Institute: samples and sequencing.

Reduce the computation requirements for *derfinder*. Design visualizations that allow us to distinguish arti-

Implement batch correction on RNA-seq data.

Frazee, A. S. Sabunciyan, K. D. Hansen, R. A. Irizarry, and J. T. Leek (2013). Differential expression analysis of rna-seq data at single base resolution. 2. https://github.com/alyssafrazeee/derfinder 3. https://github.com/lcolladotor/ballgownR-devel

LCT is supported by CONACyT and R01HG006102.