Seminar III: R/Bioconductor

Leonardo Collado Torres
lcollado@lcg.unam.mx
Bachelor in Genomic Sciences
www.lcg.unam.mx/~lcollado/

August - December, 2009
Advanced Plotting

intro

lattice

plotrix

ggplot2

car
R is strong in plots

- As you might recall, R is very strong for making plots, and it does so fast.
- We’ve seen how to make barplots, qqplots, mosaicplots, and many other ones.
- After all, plotting is very important for doing exploratory data analysis.
- However, all of them just make a small part.
Install some packages

To gain some time, please install these packages:

> install.packages("lattice")
> install.packages("mlmRev")
> install.packages("plotrix")
> install.packages("ggplot2")
> install.packages("car")
> install.packages("DAAG")
Task Views

- First of all, remember the CRAN Task Views.
- http://cran.r-project.org/web/views/Graphics.html
- From there, go to the plotrix page.
- What two functions did they introduce on version 2.5-3?
You might decide to check the reference manual and test out the examples, but that’s quite time consuming.

I found out on the R Journal about a new function on the tools package.

```r
> library(tools)
> testInstalledPackage(pkgname)
```

It's very easy to create pdf files with all the example plots of a given package!
Remember to check the help

- Remember to use:
 > `help.start()`
 > `help(package = pkgname)`

- What is the replacement of the `hist` function on the lattice package?
Intro

- It’s an *implementation* of Trellis graphics and created by Deepayan Sarkar.
- Basically, its great for plotting multivariate data!
 > `?` (Lattice)
- How are the lattice high level functions special?
We’ll use a data set from the mlmRev package and in general we’ll follow the BioC2008 lattice lab.

```r
> library(lattice)
> data(Chem97, package = "mlmRev")
```

What is the class of Chem97?

How many variables does it have? You might want to use `length`
Formula syntax

- We’ll mostly use three variables: score, gcsescore and gender.
- Now, `lattice` uses the `formula` syntax.
- Basically its $y \sim x \mid g_1$ where x is the variable with the numeric values and g_1 is a factor.
Comparing histograms

\[
> \text{hist(Chem97$gcsescore)}
\]
Comparing histograms: part II

```r
> print(histogram(~gcseScore, data = Chem97))
```
A grouping var

- The variable score only has values 0, 2, 4, 6, 8 and 10.
 > head(Chem97$score)
 [1] 4 10 10 10 8 10
 > class(Chem97$score)
 [1] "numeric"
- We can use this variable as a factor!
- Let's make a more interesting plot :)
Multiple hist

> print(histogram(~gcsescore | factor(score),
+ data = Chem97))
And gender?

- But we want to use our third variable: gender

  ```r
  > class(Chem97$gender)
  [1] "factor"
  ```

- Its **difficult** to plot two histograms on the same panel, but that’s not the case with density lines!
Densities

```r
> print(densityplot(~gcsescore |
+   factor(score), Chem97, groups = gender,
+   plot.points = FALSE, auto.key = TRUE))
```
Densities
QQ norm too!

```r
> print(qqmath(~gcsescore | factor(score),
+               Chem97, groups = gender, auto.key = TRUE,
+               aspect = "xy", f.value = ppoints(1000)))
```
QQ norm too!
Compare QQ norm

- Re-do the above QQ norm plot with the following arguments:
 - `f.value = ppoints(100)`
 - `type = c("p", "g")`

- Which of the two QQ norm plots is clearer?
QQ plots

```r
> print(qq(gender ~ gcsescore | factor(score),
+       Chem97, f.value = ppoints(100),
+       type = c("p", "g"), aspect = 1))
```
QQ plots
Boxplots

> print(bwplot(factor(score) ~ gcsescore | + gender, Chem97))
Boxplots
Boxplots II

```r
> print(bwplot(gcsescore ~ gender | factor(score), Chem97, layout = c(6, 1)))
```
Boxplots II

![Boxplot diagram showing gcsescore for different groups and genders. The diagram includes boxplots for groups 0, 2, 4, 6, 8, and 10, and males (M) and females (F).]
Stripplot

- Useful for small data sets :)

```r
> library(DAAG)
> print(stripplot(ht ~ factor(sport),
+    data = ais))
```
Stripplot
Stripplot II

- The **jitter** argument saves the day!
- Plus points in lattice are partially transparent

```r
> print(stripplot(ht ~ factor(sport),
+     data = ais, jitter = T))
```
Stripplot II
xyplot

- With lattice, we can also make something similar to plot
- But first, let’s create a subset of the type of sports.

```r
> subset <- ais$sport %in% c("Netball",
+    "Tennis")
> print(xyplot(ht ~ wt | sport, groups = sex,
+           pch = c(4, 1), aspect = 1,
+           subset = subset, data = ais))
```
Seminar III: R/Bioconductor

lattice

xyplot

Netball

Tennis

$\begin{array}{c}
\text{Netball} \\
\text{Tennis}
\end{array}$
xyplot II

- What will happen if we say `auto.key=TRUE`?
- On this plot, we are visualizing data from how many variables?

```r
> print(xyplot(ht ~ wt | sport, groups = sex,
+        pch = c(4, 1), aspect = 1,
+        auto.key = list(columns = 2),
+        subset = subset, data = ais))
```
xyplot II

The diagram shows a scatter plot comparing weight (wt) and height (ht) for different sports. The plot is split into two sections: Netball and Tennis. Each data point represents an individual's height and weight, with different symbols indicating males (m) and females (f). The weights range from 50 to 80 kg, and the heights range from 160 to 190 cm. The data points show a trend where taller individuals tend to have higher weights, particularly in the Tennis section.
xyplot B

```r
> data(Earthquake, package = "nlme")
> print(xyplot(accel ~ distance,
+ data = Earthquake))
```
xyplot B
xyplot B II

▶ What does the scales argument control?
▶ What would happen if you delete smooth from the type argument?

```r
> print(xyplot(accel ~ distance,
+   data = Earthquake, scales = list(log = TRUE),
+   type = c("p", "g", "smooth"),
+   xlab = "Distance From Epicenter (km)",
+   ylab = "Maximum Horizontal Acceleration (g)"))
```
xyplot B II

Distance From Epicenter (km)
Maximum Horizontal Acceleration (g)

10^−2.5
10^−2.0
10^−1.5
10^−1.0
10^−0.5
10^0.0
10^0.5
10^1.0
10^1.5
10^2.0
10^2.5
3D!

- With the `cloud` function it’s possible to create 3D plots.
- To rotate it, you need to re-make it with different values for the x, y and z.

```r
> print(cloud(depth ~ lat * long,
+ data = quakes, zlim = rev(range(quakes$depth)),
+ screen = list(z = 115, x = -60),
+ panel.aspect = 0.75, xlab = "Longitude",
+ ylab = "Latitude", zlab = "Depth"))
```
3D!
That’s it for lattice

- Lattice has more plot functions such as `barchart` and `dotplot` which we won’t cover today, but feel free to check them.
- There is also a book available on `lattice`: http://lmdvr.r-forge.r-project.org/
- As I said at the beginning, use the `tools` package to explore `lattice` and `latticeExtra`.
Intro

- It contains loads of enhanced R functions.
- The reference manual has 139 pages!!!
- Functions such as adding a table, standard deviation bars, cutting axes, etc.
Barplot with table

- First, we’ll create a data.frame with some data
- Then we’ll use the `barp` function to create a barplot
- Finally, we’ll add the table to our plot

```r
> set.seed(123)
> df <- data.frame(Time0 = runif(3),
+                  Time1 = rnorm(3), Time2 = rlnorm(3))
> df <- round(df, digits = 2)
> rownames(df) <- c("Gene1", "Gene2",
+                  "Gene3")
> df
```
Barplot with table

<table>
<thead>
<tr>
<th></th>
<th>Time0</th>
<th>Time1</th>
<th>Time2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene1</td>
<td>0.29</td>
<td>1.19</td>
<td>0.90</td>
</tr>
<tr>
<td>Gene2</td>
<td>0.79</td>
<td>-1.69</td>
<td>0.89</td>
</tr>
<tr>
<td>Gene3</td>
<td>0.41</td>
<td>1.24</td>
<td>1.20</td>
</tr>
</tbody>
</table>

> library(plotrix)
> barp(df, ylab = "Expression Lvl vs Control",
+ names.arg = colnames(df), col = 1:3)
> addtable2plot(0.45, -1, df, bty = "o",
+ display.rownames = TRUE, hlines = TRUE,
+ title = "Data in table format")
Barplot with table

Expression Lvl vs Control

<table>
<thead>
<tr>
<th>Gene</th>
<th>Time0</th>
<th>Time1</th>
<th>Time2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene1</td>
<td>0.29</td>
<td>1.19</td>
<td>0.9</td>
</tr>
<tr>
<td>Gene2</td>
<td>0.79</td>
<td>-1.69</td>
<td>0.89</td>
</tr>
<tr>
<td>Gene3</td>
<td>0.41</td>
<td>1.24</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Plot with gaps

- With Plotrix we can make plots that have a gap on one axis.
- For example, a normal plot with a gap on the Y axis.

```r
> data <- c(rnorm(8) + 3, rnorm(8) +
+ 21, rnorm(8) + 4.5, rnorm(8) +
+ 20)
> color <- c(rep(2, 8), rep(3, 8),
+ rep(4, 8), rep(1, 8))
> gap.plot(data, gap = c(8, 16),
+ xlab = "Index", ylab = "Values",
+ main = "Gap on Y axis", col = color)
```
Plot with gaps
Gap on a barplot

- Or a barplot with a gap.
- Very helpful to visualize all your data.
- However, there is an issue with the labels on the Y axis T_T so be careful when using this kind of plot.

```r
> data <- c(rnorm(10), rnorm(10) + 30)
> gap.barplot(data, gap = c(6, 25), xlab = "Index", ytics = c(1:30), ylab = "Group values", las = 2)
```
Gap on a barplot
Error bars

- Nowadays you get to see lots of graphs with the error bars.
- Experimental papers generally have 3 to 5 repeats of the same experiment.
- The `dispersion` function will be helpful to make this kind of plot.

```r
> data <- matrix(rnorm(100), 10, + 10)
> a <- colMeans(data)
> b <- std.error(data)
> plot(a, ylim = c(min(a - b), max(a + b)), xlab = "Sample", ylab = "Value",
+ col = 4, type = "o")
```
Error bars

\[
> \text{dispersion(1:10, \text{colMeans(data)}, + b)}
\]
Error bars

[Graph showing error bars for sample values]
Some real data

- For the next plots, we’ll use data from this article where they sequenced a Korean individual.
- I already saved as csv files two tables for easy import. We’ll load them into R with the `read.csv` function.
  ```r
  > t1 <- read.csv("http://www.lcg.unam.mx/~lcollado/B/data/SuppTable01_kogenome6_double_end-clone_1132_742.csv", 
  +     header = T)
  > t2 <- read.csv("http://www.lcg.unam.mx/~lcollado/B/data/SuppTable06_nsSnp_AK1.csv", 
  +     header = T)
  ```
- Use `head`, `dim`, `class` to find out more about the data.
Plotrix has another function that plots error bars.

We’ll use our first table and get the data we need using `tapply`.

```r
> means <- tapply(t1$bac_size, t1$chrNo, mean)
> err <- tapply(t1$bac_size, t1$chrNo, std.error)
> plotCI(1:24, means, err, col = "red",
        scol = "blue", las = 2, main = "bac_size per chrNo")
```
One similar to image

- With `color2D.matplot` we can make plots very similar to image
- What differences do you notice vs image?

```r
> mat <- matrix(rnorm(100, 0, 2), + 10, 10)
> color2D.matplot(mat, show.legend = T)
```
One similar to image
Hierobarp

▶ We’ll use the default example for this powerful plot.

```r
> test.df <- data.frame(Age = rnorm(100, + 25, 10), Sex = sample(c("M", + "F"), 100, TRUE), Marital = sample(c("D", + "M", "S", "W"), 100, TRUE), + Employ = sample(c("Full Time", + "Part Time", "Unemployed"), + 100, TRUE))
> test.col <- list(Overall = "green", + Employ = c("purple", "orange", + "brown"), Marital = c("#1affd8", + "#caeecc", "#f7b3cc", "#94ebff"), + Sex = c(2, 4))
```
Hierobarp

```r
> hierobarp(formula = Age ~ Sex + Marital + Employ, data = test.df,
+ ylab = "Mean age (years)",
+ main = "Show only the final breakdown",
+ errbars = TRUE, col = test.col$Sex)
```
Hierobarp

Show only the final breakdown
Two scales

- Sometimes you want two lines with different scales on the same plot.
- `twoord.plot` is the solution :)

```r
> twoord.plot(2:10, seq(3, 7, by = 0.5) +
+ rnorm(9), 1:15, rev(60:74) +
+ rnorm(15), xlab = "Sequence",
+ ylab = "Ascending values",
+ rylab = "Descending values",
+ main = "Plot with two ordinates - points and lines")
```
Two scales
The final plot I’ll show you from plotrix enables us to zoom into a section of the plot.

```r
> zoomInPlot(rnorm(100), rnorm(100),
+        rxlim = c(-1, 1), rylim = c(-1, 1), zoomtitle = "Zoom In Plot")
```
Zoom
Intro

- ggplot2 is a much more sophisticated plotting package.
- 199 pages long ref manual!!!
- Let's take a look at some examples.
Plotmatrix

- We’ll use the **iris** data set which is used quite frequently to exemplify scatterplots.
- Meaning that you are using 3 or more variables.
- Explore **iris** with head and other similar functions.

```r
> plotmatrix(iris[, 1:4])
```
Plotmatrix II

- If we combine `plotmatrix` with `geom_smooth` we can get a much better graph.

```r
> plotmatrix(iris[, 1:4]) + geom_smooth(method = "lm")
```
On the class where we’ll learn about linear regressions, we’ll be back and make plots like this one:

```r
> mod <- lm(mpg ~ wt, data = mtcars)
> qplot(.fitted, .resid, data = mod) +
  geom_hline() + geom_smooth(se = FALSE)
```
Intro

- While this package has quite a lot of functions too (105 page ref man), one special plot caught my eye.
- Feel free to check all the examples later if you want :D
scatterplot.matrix

- Quite similar plot to some we made before with automatic colors

```r
> library(car)
> scatterplot.matrix(~income + education +
>               prestige | type, data = Duncan)
```
scatterplot.matrix

Seminar III: R/Bioconductor

```R
library(car)
scatterplot.matrix(prestige ~ income + education, data = guts)
```
scatterplot

- With `scatterplot` we can create boxplots on our axis!!

```r
> scatterplot(prestige ~ income |
+ type, data = Prestige, span = 1)
```
scatterplot
Session Info

> sessionInfo()

R version 2.10.0 Under development (unstable) (2009-07-21 r48968)
i386-pc-mingw32

locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices
[4] utils datasets methods
[7] base

other attached packages:
[1] car_1.2-15
[2] plotrix_2.6-4
Session Info

[3] DAAG_1.00
[4] randomForest_4.5-30
[5] rpart_3.1-44
[6] MASS_7.3-0
[7] lattice_0.17-25

loaded via a namespace (and not attached):
[1] grid_2.10.0 tools_2.10.0