Seminar III: R/Bioconductor

Leonardo Collado Torres
lcollado@lcg.unam.mx
Bachelor in Genomic Sciences
www.lcg.unam.mx/~lcollado/

August - December, 2009
Bioconductor and Documentation

Bioconductor

Reproducible Research

Exercises/Homework
Intro

- It’s the largest repository of genomic related packages for R available at http://bioconductor.org.
- BioC was founded in 2001 and here you can find the core developers. Just like R, it follows a 6 month release cycle.
- I highly recommend you to visit the basic introduction here\(^1\).
- It’s open source and open development initiative! You can contribute to BioC!

\(^1\)Scroll down to the *What is Bioconductor?* section
Getting started

- In R, the basic function to install a packages is without much surprise `install.packages()`
- For Bioconductor, use the `biocLite` script. You might find this guide useful :)
  ```
  > source("http://bioconductor.org/biocLite.R")
  > biocLite()
  ```
- Using `biocLite` without any arguments downloads a basic set of packages for your appropriate R version and plataform.
Browsing for packages

- If you are looking for a package that might help you with your work, I recommend these two options:
 1. While very new, the biocViews taxonomy browser is very promising and easy to browse: software 2.5 biocViews and biocViews categories
 2. Currently, the most complete option is to simply browse the download section. For example, software for the current dev version (BioC 2.5).

- A package can depend, import and suggest other packages.
 1. Depend: end user can see the functions
 2. Import: the package uses but does not let the end user see
 3. Suggest: useful for some expanded workflows

- On which packages does chipseq depend on?
- What is the 5th most downloaded Bioconductor package?
Viewing a package

- As for any package you’ve installed, you can view a basic description, the list of functions and methods with the following syntax:
 \[\text{help(package = pkgname)} \]
- Who is the maintainer of the Biostrings package?
- Her or his email?
- How is it licensed?
A **BIG** difference between Bioconductor packages and regular CRAN packages is that Bioconductor packages are documented with a *vignette* file and a reference manual.

- A **vignette** is a document that contains both text (explanations) and R code that exemplify how to use the functions from a given package.
- The **reference manual** lists all the functions/methods with some examples but can be harder to understand.
Finding vignettes

- While the pdf files are normally built on your machine, you can also download them by browsing the download section.
 - For example look here for the chipseq vignette\(^2\).
- Inside R, you can also find the list of available vignettes by typing:
 > `vignette(package = "pkgname")`
- **Note**: if you are using the dev version (such as us), checking the Bioconductor Changelog for a package can be informative!
- What kind of bug did they fix on August 4th?

\(^2\)More exactly, a workflow.
Expert help

- If you have explored every way to find help, there is a way to get expert help!
- Have you really, really, yes . . . really explored all the options? Obviously including a google search. Reading the posting guide is a must!
- Then, simply send your question to the Bioconductor Mailing List. There are three flavors:
 1. General bioconductor list
 2. BioC-devel list
 3. High throughput sequencing list
Registering to the list

- At least during this semester, I will require all of you to register to the BioC mailing list.
- As you could see on the syllabus, from next class on forth, I will ask some of you to present interesting topics from the discussions of that week.
- So, go to this URL: https://stat.ethz.ch/mailman/listinfo/bioconductor
- Enter your information and I highly recommend you to choose "Yes" for the option: Would you like to receive list mail batched in a daily digest?
Extra

- Feel free to register to the other two mailing lists:
 - https://stat.ethz.ch/mailman/listinfo/bioc-devel
 - https://stat.ethz.ch/mailman/listinfo/bioc-sig-sequencing
- You may decide to *filter* the emails into a specific folder in your mail :)

Workshops

- In accordance with the open source nature of Bioconductor, you can find presentations, talks, labs and much more on the Workshops page.
- http://bioconductor.org/workshops/
- If you browse to 2008 and 2009, you’ll notice some familiar courses :)
- For the curious ones, the BioC workshops such as BioC2008 and BioC2009 have very interesting labs. A lab is a practical session.
Although partially contained on the workshops section, Bioconductor has a set of freely available workflows.

http://bioconductor.org/docs/workflows/

For example, there are workflows for Affymetrix SNP arrays, Illumina Expression Microarrays, etc.
Finally, but not least important, there is a section for Bioconductor related publications:

http://bioconductor.org/pub/

We already ordered some of those books and you can also find the reference on the supporting material for this course.

Note that we DO have access to some of these books on pdf format through our Springer trial subscription.

I encourage you to read the following New York Times articles on Bioconductor.
The core

- **Biobase** is the main package for Bioconductor, specially if you are working with microarrays.

- It defines the *ExpressionSet* class which was constructed to organize large amounts of biological data.

 1. `experimentData` to describe the experiment
 2. metadata such as *annotation*, information on the chip technology in `featureData` and info on the samples in `phenoData`
 3. tips on how to access the data values\(^3\) as `assayData`

\(^3\)As its meant for microarrays, the data values are normally expression data.
More

- Biobase has other handy functions, such as `biocReposList` in case that you want to use the `install.packages` function. The reference manual is rather long!

```r
> library(Biobase)
> biocReposList()
```

```
  bioc
      "http://bioconductor.org/packages/2.5/bioc"

  aData
      "http://bioconductor.org/packages/2.5/data/annotation"

  eData
      "http://bioconductor.org/packages/2.5/data/experiment"

  extra
      "http://bioconductor.org/packages/2.5/extra"
```
brainarray
"http://brainarray.mbni.med.umich.edu/bioc"

cran
"http://cran.fhcrc.org"
Seminar III: R/Bioconductor

Bioconductor

Biobase

Heatmap

Let's view a more complicated version of the `image` function. Biobase has a data set called `geneData`. What are the dimensions?

```r
> data(geneData)
> heatmap(geneData, Rowv = NA, Colv = NA,
+ cexRow = 0.2)
```
Heatmap
Like image?

- What does `heatmap` do to our data before plotting it?
 > `?` (`heatmap`)

- Play around with the previous plot:
 1. Delete the `Colv` argument
 2. Delete the `Rowv` argument while keeping `Colv`
 3. Delete both and only keep `cexRow`

- Are all the heatmaps equal? If not, what changes?
Quick heatmap explanation

- We won’t get into the details, but heatmap with the default parameters re-orders the rows and the columns and creates groups (clusters) determined by euclidean distance.

- At some point in the course you’ll be able to do heatmaps just like the following one.
A full heatmap
What is it?

- The goal is simple: to enable others to reproduce your results.
- But, isn’t research supposed to be reproducible in order to be published? What about supp. material?
- *Discussion*: Is it to use the exact same scripts/programs with the same parameters? Or is it to follow the same workflow even if you re-write the scripts?
Discussion cont.

- If you don’t get the same results using the same scripts/programs and parameters, then something is seriously wrong! Or you are not using the same input files; could be a version issue.

- Whom do you trust? The one who did the original work or the one who re-wrote the scripts/programs to match the same workflow?
Everyone and anyone makes simple mistakes: typos, starting from 0 instead of 1, positive as negative and vice versa, etc.

You can *inherit* problems! Simple enough, you are using data from a previous work and the data has some errors.
Forensic bioinformatics

- No, it’s not to figure out who was the murderer in a crime scene.
- Its deciphering someone’s code when its messy and the code doesn’t match the written description of the algorithm/workflow.
- If you aren’t careful, you might end up doing forensic bioinformatics with your own code!!! I do recommend using a version control system such as subversion for your scripts.⁴

⁴RapidSVN is a simple GUI if you want to avoid the command line
Some extreme cases

- Keith Baggerly gave an excellent talk on the subject at BioC2009. Find it through the workshops site.

- 1 to 0 mistakes, adding 1 to names, inverting positive and negative responses, wrong association between names and data, manual input of the biological relevant genes, and overall a big mess!!

- Magazines didn’t seem to care much as no *fe de erratas* was published. Keeping themselves ”clean” on public eyes.

- Funding agencies see these events *frequently* and they do care more. However, on Baggerly’s case study, the scientists are proceeding to experiment with humans...
So...

- So, in R, how do you do reproducible research?
- An excellent practice would be to develop an experimental data package and submit it every time you publish your work.
- You might just use the package to share the data with your lab members or colleagues.
- Vignettes! (Sweave is behind)
TEH solution

Developed by Friedrich Leisch5, \texttt{Sweave} is an \texttt{R} function that evaluates \texttt{R} code chunks and parses the output into \LaTeX format.

\LaTeX files look like a mix between a script and a plain text file. You can turn \LaTeX files into PDF files, just like this presentation and the vignette files!

The workflow is basically:

1. Create a \texttt{.Rnw} file in \LaTeX format with some \texttt{R} code specified as such.
2. Transform your \texttt{.Rnw} file into a \texttt{.tex} file using \texttt{Sweave}.
3. Create the final \texttt{.pdf} file from the \texttt{.tex} file.

\footnote{He is a BioC core dev.}
Commands in Unix

- R CMD Sweave file.Rnw
- R CMD Stangle file.Rnw\(^6\)
- pdflatex file.tex
- pdftex file.tex\(^7\)
- If you wish, you can then remove some of the files using \texttt{rm}. To avoid typing, it’s very useful to create a general shell script :)

\(^6\)Stangle extracts the R code pieces and creates a .R file with the R code

\(^7\)Yes, two times. You need to do so for structures such as the outline.
In Windows

▶ You will need to install Miktex. The first time you use pdflatex, Miktex will download some \LaTeX packages.

▶ The commands themselves change such as `R.exe -e "Sweave('file.Rnw')"` and `pdflatex.exe file.tex`\(^8\)

▶ www.johndcook.com/troubleshooting_sweave.html is very useful for Windows users.

\(^8\)You might need to modify your PATH environment variable to include the R and R/lib folders
User guides

- We won’t go deep in class time into \LaTeX nor Beamer9, but I have cited some very good pdf manuals on the supporting material of this course.
- The Not so Short guide to \LaTeX is very complete :) Check it out for tips on typesetting text and mathematical formulae as well as for a \LaTeX introduction.
- There is a second PDF specialized on symbols... and there are LOTS.
- Finally, the Beamer User Guide has all you need to know about Beamer and has a funny tutorial.

9It's used to make presentations such as this one
Now, I got started by comparing the Rnw files with the pdf files from James Bullard course. And if I had a question, I would check the pdf guides.

To understand more about Sweave, let's check a Rnw file. Open

www.lcg.unam.mx/~lcollado/B/quizies/01_answer/

You’ll notice the Sweave.sty file, which you normally need on every Sweave working directory.
Top of the Rnw file

- Open the Rnw file. The % symbol is used to comment lines in \LaTeX, so which is the first un-commented line?
- Next we load some \LaTeX packages, define some commands, set the page style and bibliography style.
- What do you think the SweaveOpt line does?
To avoid spamming our folder, we save the images on the `plots` folders with the name starting by `fig`.

I do not recommend having multiple Rnw files on the same working directory. I sometimes use 2 but I need to be careful and specify different figure surnames.

Then we have our first R command:

```
> options(width = 40)
```

As you can see, an R code chunk starts with a line `<<eval=TRUE, echo=TRUE>>=`. Then you can put any R code, and you end the chunk with the symbol `@`.
The rest of the doc

▶ Next, On this Rnw file you’ll find information on the title, the author, the start of the document, how to make the title, some line escapes, notes and the abstract.

▶ A file can be divided into sections and subsections.

▶ Check out the special syntax to include R figures.

▶ Remember that for every begin there must be an end or it’ll crash.

▶ The rest should be self explanatory including when the document ends.
Workspace

- Be careful with your workspace when using Sweave.
- If you have saved a workspace on your current working directory, when you use Sweave it’ll be loaded automatically.
- You can always add this code line to avoid inheriting workspace issues:
  ```r
  > rm(list = ls())
  ```
A Sweave complement

- On Bioconductor you can find the `weaver` package.
- It was designed to help you when your document is large and/or you have time consuming computations that you don’t want to repeat every time you change a detail on your Rnw file.
- Quite helpful for writing a thesis or some other long project.
- Install it with `biocLite` and check out the vignettes; specially the `howto`.
Weaver R chunks

- To use `weaver`, you’ll need to load it at the beginning.

  ```R
  > library(weaver)
  ```

- Then, your R code chunks will start with:

  ```R
  <<eval=TRUE, echo=TRUE, cache=TRUE>>=
  ```
Part 1: template

Create your own template Sweave document.

- **Title:** course name, homework number
- **Author:** name, email, include a link to your personal academic webpage if you have one.\(^{10}\)
- **Abstract:** short description on the homework and any notes you might want to add
- **A sample homework solution:** meaning a short description and some code. For example, how to sum $2 + 3$.

\(^{10}\text{You will probably make one this semester on the PHP course.}\)
Part II: \textit{ALL} dataset

- You’ll have to explore the ALL dataset11 and create your first homework as a vignette document.
- Install the \texttt{ALL} package and explore the ALL object.
 \begin{verbatim}
 > library(ALL)
 > data(ALL)
 \end{verbatim}
- Select the samples from the B-cell tumors.
- Select those of molecular type BCR/ABL or \texttt{NEG}.
- Combine the previous two subsets and keep the \textit{intersection}.
- Eliminate unused factor levels on your resulting subset.
- Use the \texttt{nsFilter} function from the \texttt{genefilter} package to keep those with \texttt{entrez} ID, \texttt{GOBP}, remove duplicate \texttt{entrez} and the following arguments:
Part II: *ALL* dataset

```r
> nsFilter(var.fun = IQR, var.cutoff = 0.5,
+ feature.exclude = "^AFFX")
```

Meaning that we’ll use the interquantile range with a variance cutoff of 0.5 to eliminate those with small variation and by excluding AFFX we’ll take out the controls AFFY probes.

How many:

1. duplicates were removed?
2. control features were excluded?
3. had low variance (small variation)?
4. had no GO?
5. had no entrez ID?

11 John Quackenbush mentioned it on Monday as the most studied dataset.
Session Info

> sessionInfo()

R version 2.10.0 Under development (unstable) (2009-07-25 r48998)
i686-pc-linux-gnu

locale:
[1] LC_CTYPE=en_US.UTF-8
[2] LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=C
[6] LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8
[8] LC_NAME=C
[9] LC_ADDRESS=C
[10] LC_TELEPHONE=C
[12] LC_IDENTIFICATION=C

attached base packages:
Session Info

[1] stats graphics grDevices
[4] utils datasets methods
[7] base

other attached packages:
[1] Biobase_2.5.5

loaded via a namespace (and not attached):
[1] tools_2.10.0