Seminar III: R/Bioconductor
GeneR

Amhed Missael Vargas Velazquez
avargas@lcg.unam.mx

September 25, 2009
What is GeneR?

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.
What is GeneR?

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.

▶ Authors
What is GeneR?

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.

▶ Authors

▶ Maintainer
Y. d’Aubenton-Carafa
What is GeneR?

GeneR is a package that allows direct use of nucleotide sequences within R software. Functions can be used to read and write sequences from main file formats (Embl, Genbank and Fasta) in order to perform a lot of manipulations and analyses.

- **Authors**

- **Maintainer**
 Y. d’Aubenton-Carafa

- I think that Y. d’Aubenton-Carafa, entered the proyect at the end :)

GeneR is a very useful package which contains some functions for the manipulation of genetic data. It’s similar to Biostrings1, However, GeneR contains more functions and it used for different things. In addition, it is related to GeneRfold2 package that allows the use of Vienna RNA library within R, meaning, tools for the prediction and comparison of RNA secondary structures.3 You can install the GeneR package in R using:

\begin{verbatim}
> source("http://bioconductor.org/biocLite.R")
> biocLite("GeneR")
\end{verbatim}

1Biostrings was showed in the previous class by Isaac
2A package created by Y. d’Aubenton-Carafa, A. Lucas; C. Thermes, the same creator as the GeneR package XD
3It’s an excellent package to talk about, and it is also interesting and easy to use.
What is it used for?

- Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.
What is it used for?

- Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.

- Handling sequences
 The usual copy-paste of parts of sequences or other manipulations can be performed by functions using vectors of strands and positions.
What is it used for?

- Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.

- Handling sequences
 The usual copy-paste of parts of sequences or other manipulations can be performed by functions using vectors of strands and positions.

- Analyzing sequences
 To count oligo-nucleotides by mono, di or tri, to look for exact word positions or to shuffle sequences.
What is it used for?

- Reading and writing sequences
 Fast sequence retrieving even from very large sequence databanks, in Fasta, Embl or Genbank formats.

- Handling sequences
 The usual copy-paste of parts of sequences or other manipulations can be performed by functions using vectors of strands and positions.

- Analyzing sequences
 To count oligo-nucleotides by mono, di or tri, to look for exact word positions or to shuffle sequences.

- Manipulation of regions on a chromosome
 Tools to easily compute any subregions (intergenic regions, exons or more sophisticated regions), without an exhaustive texture on a whole chromosome.
What is it used for?

- Performing bioinformatic jobs
 Functions related to genetic and structural aspects of the sequences: ORF localization, translation, or RNA secondary structure determination\(^4\).

\(^4\)with extension of GeneR: GeneRfold package
I create a random sequence for the samples

\[\text{> library(GeneR)} \]
\[\text{> seq }\leftarrow \text{randomSeq(prob = c(0.2, 0.3, 0.2, 0.3), letters = c("T", "C", "A", "G"), n = 30)} \]

Insert a poly A into the end of the sequence

\[\text{> seq }\leftarrow \text{insertSeq(seq, "AAAAAAAAAAAA", 30)} \]
\[\text{> seq} \]

[1] "GAAACAGAGGCTCCTCTGGCTTCGTTTACAAAAAAAAAAAAAC"

So sorry my friends, but this is a brief description of the GeneR, so I'm not going to explain each function. ; p
Compute the reverse complementary

> strComp(seq)

[1] "GTTTTTTTTTTTGTAACGAAAGCCAGAGGAGCCTCTGTTTTTC"

Count di-nucleotides

> strCompoSeq(seq, wsize = 2)

 TT TC TA TG TX CT CC CA CG CX AT AC
[1,] 0.1 0.05 0.05 0.05 0 0.05 0.05 0.1 0.05 0 0 0.05 0.

 GG GX XT XC XA XG XX
[1,] 0.05 0 0 0 0 0 0

Translate the sequence string to a protein

> strTranslate(seq)

[1] "ETEAPLASFTKKK"

It can be in groups from 1 to 15
Most of the functions in the GeneR package use buffers.

- Why use buffers
Most of the functions in the GeneR package use buffers.

- Why use buffers
- To work on large sequences (i.e. a whole chromosome).
Most of the functions in the GeneR package use buffers.

- Why use buffers
- To work on large sequences (i.e. a whole chromosome).
- In addition, you can buffer fasta sequences from Ncbi
Buffering the complete genome of Nanoarchaeum equitans7 from Ncbi.

\begin{verbatim}
> seqNcbi("NC_005213", file = "toto.seq", submotif = TRUE + , type = "fasta")
[1] 1

> readFasta("toto.seq")
[1] 0
\end{verbatim}

Size of the genome.

\begin{verbatim}
> sizeSeq()
[1] 490885
\end{verbatim}

Looking for motifs8.

\begin{verbatim}
> exactWord("ACTGA", seqno = 0, case.sensitive = TRUE)
\end{verbatim}
One of the most little genomes, i don't wanna break my computer

Also, there is a function named getOrfs, that is supposed used to know where find Open Reading Frames, however, is not working :(

Amhed Missael Vargas Velazquez avargas@lcg.unam.mx
DNA TO RNA

```r
> dnaToRna()
[1] 0
```

Or writing our new RNA file

```r
> writeFasta(seqno = 0, file = "Nan_rna.fa", name = + "MyRNA", comment = "RNA generated by DNA + of Nanoarchaeum equitans", append = TRUE)
[1] 1
```

You must remember, any function that uses the buffer, changes the content of the buffer.

We changed our DNA, so that if we use a `getSeq` you will see RNA

```r
> getSeq(seqno = 0, from = 1, to = 30)
[1] "UCUCCGACAGAUCUUCUUUGUUAACAAA"
```

You might prefer to change the number of the buffer for anything that you might do.
We already see in one of our class, how is constitute a bacterial genome...
So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:
We already see in one of our class, how is constitute a bacterial genome...
So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:
 - The size
We already see in one of our class, how is constitute a bacterial genome...
So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:

- The size
- The GC content
We already see in one of our class, how is constitute a bacterial genome...
So, why not use the functions to do a brief review the genome of the Rhizobium etli. We want to know:

- The size
- The GC content
- A GC Skew of the genome
Buffering the sequence

> seqNcbi("NC_007761", file = "Retli.seq", submotif = + TRUE, type = "fasta")

[1] 1

> readFasta("Retli.seq")

[1] 0

The size

> sizeSeq()

[1] 4381608

The GC content

> GCcontent()

 pgc N
 G 0.6127221 0
For the GC skew, I create an object with the size for sectionate the genome

```r
> size <- sizeSeq()
```

And now we use the function `densityProfile`

```r
> dens <- densityProfile(ori = 398328 * (1:11), from = 1,
+ to = size, seqno = 0, fun = seqSkew, nbinL = 24, nbinR = 24, sizeBin = 16597)
```

At last, we plot :)

```r
> plot(dens$skgc, main = "GC skew")
```

[1] 1
GC skew

Amhed Missael Vargas Velazquez
avargas@lcg.unam.mx

Seminar III: R/Bioconductor GeneR
GeneR has great tools:

- To find a region in the genome
- To manipulate sequences
- To do large jobs

As we see GeneR has the potential to be an excellent tool for conducting bioinformatics.
GeneR has great tools:

- To find a region in the genome
GeneR has great tools:

- To find a region in the genome
- To manipulate sequences
GeneR has great tools:
- To find a region in the genome
- To manipulate sequences
- To do large jobs

As we see Gene R has the potential to be an excellent tool for conducting bioinformatics.
I encourage you to explore the Help Options of this package and to use them, they’re user - friendly and fun XD .