Seminar III: R/Bioconductor Rolexa

Luz Mayela Soto Jimenez

November 13, 2009
Installing the package I

> source("http://bioconductor.org/biocLite.R")
> biocLite("Rolexa")
This package provides an alternative base calling algorithm using model-based clustering (mclust) and probability theory to identify ambiguous bases and code them with IUPAC symbols.

We also select optimal sub-tags using a score based on information content to remove uncertain bases towards the ends of the reads.
The Rolexa package uses a RolexaRun object to store the various parameters of the run, and uses the ShortRead for manipulating data, in particular many Rolexa functions take a SolexaPath object as argument.
Loading the library I

```r
> library("Rolexa")
> rolenv = SetModel(idsep = "_")
> GetModel(rolenv)

$MinimumTagLength
[1] 15

$SequencingLength
[1] 36

$Barcode
[1] 0

$HThresholds
```
Loading the library II

[1] 0.5849625 1.3219281 1.8073549

IThresholds

[1] 2.058894 2.115477 2.169925 2.222392
[5] 2.273018 2.321928 2.369234 2.415037
[9] 2.459432 2.502500 2.544321 2.584963
[13] 2.624491 2.662965 2.700440 2.736966
[17] 2.772590 2.807355 2.841302 2.874469
[21] 2.906891 2.938599 2.969626 3.000000
[29] 3.142958 3.169925 3.196397 3.222392
[33] 3.247928 3.273018 3.297681 3.321928

PET
Loading the library III

[1] FALSE

fit
[1] FALSE

normal
[1] TRUE

decorrelate
[1] "both"

verbose
[1] 0
$colors$

[1] "black" "green"
[3] "blue" "chocolate3"
[5] "red" "#007F7F"
[7] "#66B20E" "#7F7F00"
[9] "#66338E" "#7F007F"
[13] "#7F6035" "#6C5649"
[15] "#685F4C" "gray"

$idsep$

[1] "_"
Meaning of each parameter

The meaning of these parameters is as follows:

- **MinimumTagLength** tags shorter than this will not be saved
- **SequencingLength** number of sequencing cycles, used to calculate the number of columns in files
- **Barcode** number of bases used as barcode at the beginning of the tag
- **HThresholds** entropy thresholds between 1 and 2-base ambiguities, 2 and 3-base ambiguities and 3-base ambiguity or undecided (the default is \(\log_2(c(1:5; 2:5; 3:5)) \))
- **IThresholds** total entropy thresholds, as a function of tag length (the default is \(\log_2(4+1 : 36=6) \))
- **PET** paired-end sequencing run
Meaning of each parameter II

- **fit** use full EM convergence instead of only one-step optimization if TRUE
- **normal** use tile-level normalization before base-calling if TRUE
- **decorrelate** use 'cycle'-level decorrelation procedure, 'channel'-level, 'both' or 'none'
- **idsep** character separating coordinate fields in sequence headers (default is ":")
- **verbose** print debug information if >0
> path = SolexaPath(system.file("extdata", + package = "ShortRead"))
> (seq_fastq = readFastq(path))

class: ShortReadQ
length: 256 reads; width: 36 cycles

> (int = readIntensities(path, pattern = "s_1_0001", + withVariability = FALSE))

class: SolexaIntensity
dim: 256 4 36
readInfo: SolexaIntensityInfo
intensity: ArrayIntensity
measurementError: not available
Base Calling II

```r
> (seq = CombineReads(run = rolenv,
+     path = path, pattern = "s_1_0001_seq*"))

class: ShortRead
length: 256 reads; width: 36 cycles

> (theta = OptimizeAngle(int = int))[1:10,
+     ]

[,1]        [,2]        [,3]
[1,] 0.7767119 1.3750800 0.4721182
[2,] 0.7653824 1.3779070 0.5618510
[3,] 0.7276859 1.3679920 0.5290140
[4,] 0.7551378 1.3842660 0.6453509
[5,] 0.7349694 1.3772290 0.6220983
[6,] 0.7377151 1.3833780 0.6556697
```

Luz Mayela Soto Jimenez
Seminar III: R/Bioconductor Rolexa
Base Calling III

<table>
<thead>
<tr>
<th></th>
<th>0.7213154</th>
<th>1.377866</th>
<th>0.6412864</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.7685749</td>
<td>1.384597</td>
<td>0.6472642</td>
</tr>
<tr>
<td>9</td>
<td>0.7681729</td>
<td>1.387350</td>
<td>0.5537521</td>
</tr>
<tr>
<td>10</td>
<td>0.7710965</td>
<td>1.379977</td>
<td>0.6961033</td>
</tr>
</tbody>
</table>

[,4]

<table>
<thead>
<tr>
<th></th>
<th>1.557188</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.557188</td>
</tr>
<tr>
<td>2</td>
<td>1.570796</td>
</tr>
<tr>
<td>3</td>
<td>1.570796</td>
</tr>
<tr>
<td>4</td>
<td>1.570796</td>
</tr>
<tr>
<td>5</td>
<td>1.570796</td>
</tr>
<tr>
<td>6</td>
<td>1.564773</td>
</tr>
<tr>
<td>7</td>
<td>1.570796</td>
</tr>
<tr>
<td>8</td>
<td>1.570796</td>
</tr>
</tbody>
</table>
[9,] 1.570796
[10,] 1.570796

> int = DeCorrelateChannels(int = int,
+ theta = theta)
> (rate = OptimizeRate(int = int))

[1] 0.01760222

> int = DeCorrelateCycles(int = int,
+ rate = rate)
> int2 = TileNormalize(run = rolenv,
+ int = int)
The base calling algorithm is a Gaussian mixture model to the four-dimensional intensity values from each cycle. Sequences from a previous base calling, if available, are used to seed the algorithm:

```r
> (res = SeqScore(run = rolenv, int = int,
+ seqInit = seq, cycles = 1:36))$sread
```

A `DNAStringSet` instance of length 256

width seq

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>36</td>
<td>TTGTTTTTCATGTG...GTATTTGTTTGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>36</td>
<td>TCCAAACTGGTAG...ATTCTCAAATCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td>36</td>
<td>TGCACCTGATAGG...GAGAGDAAGK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>36</td>
<td>TATGAGAGTAGCY...GWSGRKGTGKBY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>36</td>
<td>TAGTAGGGTGCCT...CAGCACGCCAAG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction to Rolexa

Working With the Data

Diagnostic Plots

Base Calling II

[6] 36 GAGAGAACTGAAA...TGAGAAATAGAC
[7] 36 GCAGAGACCCACA...CGGCTCCWGACC
[8] 36 GAGATATTTATTTG...TCTGTGATGCAA
[9] 36 GGTGGAAAWAGGA...YTCYGCTTAYAT
...
...
...
[248] 36 TGGGGAGMYGKGG...MYRTHHRWVVDK
[249] 36 GTGGAGGCTAGCA...CBTTGTGARGBA
[250] 36 GATTTTCAAAGTT...TGTTATCACCAG
[251] 36 GAAAAATGAGAAAC...GACTTGAAAAAT
[252] 36 GGYATTTTCTTTT...RCTTTGKWGBDH
[253] 36 GGTAGGRAGAGCT...TTCTGCTTRRAW
[254] 36 GAAAAACGWGAAA...CACACTGTAGRA
[255] 36 GATTCCTTATGTG...TAATATTTCTAC
[256] 36 GGATGAGAAGAAT...TCTCTAGCCACA

Luz Mayela Soto Jimenez
Seminar III: R/Bioconductor Rolexa
The base calling results consist of a full-length tag with base quality entropy scores, which can then be filtered to extract the best sequence tag for each colony. This is where the parameters IThresholds comes into play:

```r
> rolenv@MinimumTagLength = as.integer(1)
> (res2 = FilterResults(run = rolenv,
+ results = res))$sread
```
A DNAStringSet instance of length 256
width seq
[1] 36 TTGTTTTTCATGTG...GTATTTGTTTGT
[2] 36 TCCAAAACTGGTAG...ATTCTCAAATCT
[3] 36 TGCACCTGATAGG...GAGAGAGDAAGK
[4] 28 TATGAGAGTAGCYAATGCCACAAAGWSG
[5] 36 TAGTAGGTGTCCT...CAGCACGCCAAG
[6] 36 GAGAGAACTGAAA...TGAGAAATAGAC
[7] 36 GCAGAGACCCACA...CGGCTCCWGACC
[8] 36 GAGATATTTTATTG...TCTGTCAATGCAA
[9] 21 GGTGGAAAWAGGAAGCAYCCC
...
[248] 10 TGGGGAGMYG
[249] 34 GTGGAGGCTAGCA...GGCBTTTGARG
Filtering and Saving III

[250] 36 GATTTTCAAAGTT...TGTTATCACCCG
[251] 36 GAAAATGAGAAAC...GACTTGAAAAAT
[252] 30 GGYATTTTCTTT...TATTTMRCTTTG
[253] 33 GGTAGGRAGAGCT...GTCTTCTGCTTR
[254] 36 GAAAAACGWGAAA...CACACTGTAGRA
[255] 36 GATTCCTTATGTG...TAATATTTCATC
[256] 36 GGATGAGAAGAAT...TCTCTAGCCACA
> str = as.matrix(res$sread[241:253])
> nt = DNA_ALPHABET
> post.entropy = matrix(0, nrow = nrow(str),
+ ncol = 36)
> post.entropy[which(str %in% nt[5:10])] = 1
> post.entropy[which(str %in% nt[11:14])] = log2(3)
> post.entropy[which(str == "N")]) = 2
> matplot(1:36, y = apply(post.entropy,
+ 1, cumsum), t = "l", lty = 1,
+ col = rainbow(6), ylim = c(0,
+ 30), xlim = c(1, 36), xlab = "cycles",
+ ylab = "cumulative entropy",
+ main = "Tag length cutoff")
> lines(1:36, rolenv@IThresholds,
+ t = "l", lty = 2, lwd = 2,
+ col = "tomato")
> abline(v = nchar(res2$sread[241:253]),
+ col = rainbow(6), lty = 2)
> legend(x = 0, y = 30, res2$sread[241:253],
+ col = rainbow(6), lty = 1,
+ bg = "white", cex = 0.8)
Tag length cutoff

- GCTGGATGYGKCTC
- GGCSCSTGGR
- CTCAGGCTGAGCTGCTGAGGTCTCTCCAGGGMG
- GTCTGACGGCTTTAAAACAGACAGCGATTTCAGCTTTC
- AATGAGCYWT
- TGGAGMATGRATTATTACTGTTGTRG
- TAGGWG
- TGGGGAGMYG
- GTGGAGGCAGCAGCTGTTTGCCBTGTTGARG
- GATTTCAAGTTAGGTAAMATGTATCACC
- GAAAATGAGAAACATACAATTGCGACTTTGAAAAAT
- GGYTTTTCTTTTTGTTTATTTMCTTTT
- GGTAGGRCAGCCTGKGCCCTTCTCTGGCTT

cycles

cumulative entropy

Luz Mayela Soto Jimenez

Seminar III: R/Bioconductor Rolexa
There are multiple possibilities for evaluating the quality of the base calling, at the level of each sequence, tile or lane. Given a sequence tag, the corresponding raw intensities and a base quality score, we can use CombinedPlot:

```r
> CombinedPlot(run = rolenv, int = int,
+  seq = seq, scores = as(quality(seq_fastq),
+  "matrix"), colonies = sample(1:nrow(int),
+  4), par = list(mfrow = c(2,
+  2), cex = 0.6, mar = c(4,
+  4, 2, 1) + 0.1))
```
Diagnostic Plots II

1:119:908

1:355:795

1:115:762

1:116:174

Luz Mayela Soto Jimenez
Seminar III: R/Bioconductor Rolexa
We can also evaluate the distribution of intensity values at selected cycles via 1- and 2- dimensional projections:

```r
> ChannelHistogram(int = int, cycles = 1,
+                   par = list(mfrow = c(2, 2),
+                          mar = c(4, 4, 2, 1) + 0.1))
```
Dimensional Projections II

A

C

G

T

Luz Mayela Soto Jimenez

Seminar III: R/Bioconductor Rolexa
> par(mfrow = c(2, 2), mar = c(4, 4, 2, 1) + 0.1)
> PlotCycles(run = rolenv, int = int, seq = seq, cycles = c(1, 20))
Dimensional Projections II

![Graphs showing dimensional projections](attachment:graphs.png)
Global statistics plotting I

- look at global statistics of a base-calling:

```r
> par(mfrow = c(2, 2), cex = 0.8,
+     mar = c(4, 4, 2, 1) + 0.1)
> BatchAnalysis(run = rolenv, seq = res2$sread,
+     scores = res2$entropy, what = "length",
+     main = "Length distribution")
> BatchAnalysis(run = rolenv, seq = res$sread,
+     scores = res$entropy, what = "ratio",
+     main = "Complementary bases ratio")
> BatchAnalysis(run = rolenv, seq = res$sread,
+     scores = res$entropy, what = "iupac",
+     main = "IUPAC codes")
> BatchAnalysis(run = rolenv, seq = res2$sread,
```
Global statistics plotting II

```r
+ scores = res2$entropy, what = "information",
+ main = "Base quality")
```
Global statistics plotting III

- **Length distribution**
 - Tag Length
 - Frequency

- **Complementary bases ratio**
 - Ratio
 - Cycles

- **IUPAC codes**
 - Ratio
 - Cycles

- **Base quality**
 - Density
 - Information content per base

Luz Mayela Soto Jimenez

Seminar III: R/Bioconductor Rolexa
And visualize the positional bias over a tile by:

```r
par(mfrow = c(1, 2))
TileImage(int = int, cycle = 1,
+    tile = readInfo(int)$tile[1],
+    ncell = 5, channel = "A")
TileImage(int = int, cycle = 1,
+    tile = readInfo(int)$tile[1],
+    ncell = 5, channel = "C")
```
Global statistics plotting II

Tile 1, cycle 1, channel A

Tile 1, cycle 1, channel C
Bye Bye I

Muchas gracias!!