R and Stats - PDCB topic
Hypothesis testing: parametric tests

LCG Leonardo Collado Torres
lcollado@wintergenomics.com – lcollado@ibt.unam.mx

March 25th, 2011
Hypothesis testing

T test

Confidence Interval

T test: two samples

T test: paired

Other tests

Exercises
Practical approach

- We use them to compare a sample to an expected distribution
- To compare a sample to another sample
- To check if two samples are from the same distribution
What we can conclude

- By default, we have a null hypothesis that we accept and we’ll test it against an alternative hypothesis.
- If the p-value is significant, we can reject the null hypothesis in favor of the alternative one. Yet, we are not giving definite proof that the alternative hypothesis is true!
- It is very important to take into account the assumptions of a given test!
T test

- It is the main parametric test used for hypothesis testing.
- What is the difference between parametric and non-parametric tests?
One sample case

- We have x_1, \ldots, x_n which are assumed to be independent realizations of random variables with a distribution $N(\mu, \sigma^2)$.
- Our null hypothesis is that $\mu = \mu_0$.
- Do we know μ?
Estimates

- We estimate μ with the empirical mean \bar{x}
- Likewise, we estimate σ with the standard deviation s
- The *standard error of the mean* (SEM) describes the variation of the average of n random values with mean μ and variance σ^2. $SEM = \frac{\sigma}{\sqrt{n}}$
SEM

- The SEM will tell us how far or close we were from estimating the real mean μ.
- Basically, if you repeat an experiment, the means from the experiments should have a tight distribution around the true mean.
- Yet, one sample is enough to get SEM.
- The t test will check if μ_0 is within $2 \times SEM$ of μ within an acceptance region at a given significance level.

$$t = \frac{\bar{x} - \mu_0}{SEM}$$ \hspace{1cm} (1)
Degrees of freedom

- Small samples have *heavier* tails than N(0,1) simply because SEM might be too small.
- Therefore, we correct t distribution with $f = n - 1$ degrees of freedom
Is the result significantly different?

- If it falls outside the acceptance region, it is.
- More exactly, we calculate the p-value.
- If the p-value is smaller than the significance level we reject the ... hypothesis.
Why do we use the one side test?

- Simply if you have other information that points you to the direction of the effect.
- In such cases you only test against one of the tails of the t distribution.
- Note that doing so changes the acceptance region and the p-value.
- If your result is not significant, then it isn’t! Don’t change to a two ways test just to get a significant result!
Quick exercise

- Below we have the daily energy intake in kJ for 11 women. Is it different from the recommended value of 7725 kJ?

```r
> daily <- c(5260, 5470, 5640, 6180,
+           6390, 6515, 6805, 7515, 7515,
+           8320, 8770)
```

- What is our null hypothesis? Our alternative one?
- Which function do we use to do the \(t \) test?
- What is our conclusion at a 5% significance level?
Quick exercise

- *t* test:

  ```r
t.test(daily, mu = 7725)
```

One Sample t-test

data: daily
t = -2.7682, df = 10, p-value = 0.01985
alternative hypothesis: true mean is not equal to 7725
95 percent confidence interval:
 5986.539 7537.098
sample estimates:
 mean of x
 6761.818
Quick exercise

Note that the output shows information on:

1. the data that we are testing
2. the degrees of freedom
3. the p-value
4. the alternative hypothesis
5. the 95% confidence interval, what is it for?
6. the sample mean of x
Quick exercise

What did we do wrong?
Quick exercise

- If our H_0 is $\mu = 7225$ and our H_1 is $\mu < 7725$ and we are using a significance level of 5%, what do we conclude?
More info on CIs

- It’s calculated with:

\[
\bar{x} - t_{0.975}(f) \times SEM < \mu < \bar{x} + t_{0.975}(f) \times SEM
\]

- It is the interval where you expect the true mean to lie on. It's basically the range of μ_0 values that cause t to lie within its acceptance region.

- With a larger sample, the interval should be smaller given the same variation.

- If you decrease the confidence, then the interval is larger for the same data set.
Theory

- We used the one way t test to check if the true mean is significantly different from a given value.
- Two-sample t tests are used to test the hypothesis that two samples come from distributions with the same mean.
- It’s nearly the same, just that we wave two independent groups.
- SEDM is the standard error of difference of means and the t test is:

$$ t = \frac{\bar{x}_2 - \bar{x}_1}{SEDM} $$ (2)
Same variance?

- That’s the question you need to ask before doing the t test with two samples.
- The underlying statistical methods vary quite a bit depending on the answer to this question.
- Which functions can we use to answer this question visually?
Practice

- We’ll use a data set from the ISwR package.
- You can install it quickly with:
  ```r
  > install.packages("ISwR")
  ```
- Let’s check the data first:
  ```r
  > library(ISwR)
  > attach(energy)
  > head(energy)
  ```
Practice

 expend stature
1 9.21 obese
2 7.53 lean
3 7.48 lean
4 8.08 lean
5 8.09 lean
6 10.15 lean

> class(energy)
[1] "data.frame"

> dim(energy)
[1] 22 2
Practice

- We want to test whether both samples come from the same distribution.

- We can do so by specifying x and y:

```r
> t.test(energy$expend[energy$stature == "lean"], energy$expend[energy$stature == "obese"])

Welch Two Sample t-test

data:  energy$expend[energy$stature == "lean"] and energy$expend[energy$stature == "obese"]
t = -3.8555, df = 15.919, p-value = 0.001411
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

22 / 49
```
Practice

-3.459167 -1.004081

sample estimates:
mean of x mean of y
8.066154 10.297778

Or we can take advantage of the formula notation:

```r
> t.test(expend ~ stature)
```

Welch Two Sample t-test

data: expend by stature
t = -3.8555, df = 15.919, p-value = 0.001411

alternative hypothesis: true difference in means is not 95 percent confidence interval:
Practice

\[-3.459167 \quad -1.004081\]

Sample estimates:

- mean in group lean: 8.066154
- mean in group obese: 10.297778
Practice

- However, we missed the important step of checking whether the variance is the same for the two groups.
- We can do so easily with boxplots
  ```r
  > library(lattice)
  > print(bwplot(expend ~ stature, 
  +    data = energy))
  ```
Practice
Practice

► So, what is our conclusion in this case at a 5% significance level?
Practice

> `t.test(expend ~ stature, var.equal = TRUE)`

Two Sample t-test

data: expend by stature
t = -3.9456, df = 20, p-value = 0.000799
alternative hypothesis: true difference in means is not 0
95 percent confidence interval:
 -3.411451 -1.051796
sample estimates:
 mean in group lean mean in group obese
 8.066154 10.297778

> `t.test(expend ~ stature, var.equal = FALSE)`
Practice

Welch Two Sample t-test

data: expend by stature
t = -3.8555, df = 15.919, p-value = 0.001411
alternative hypothesis: true difference in means is not 0
95 percent confidence interval:
 -3.459167 -1.004081
sample estimates:
 mean in group lean mean in group obese
 8.066154 10.297778
Testing equality of variance

- To properly test whether the variance of the two group is equal, we use the function `var.test`:
```
> var.test(expend ~ stature)
```

F test to compare two variances

data: expend by stature
F = 0.7844, num df = 12, denom df = 8, p-value = 0.6797
alternative hypothesis: true ratio of variances is not 95 percent confidence interval:
 0.1867876 2.7547991
sample estimates:
Testing equality of variance

ratio of variances

\[0.784446 \]

- It’s actually a *F* (Fisher) test
- In this case, the samples are small so it’s also important to guide our decision by the CI.
Basic idea

- This case of the t test is useful when you take measurements on the same group two times. Meaning that there is no independence between the two groups.
Lets jump right into it

- With the *intake* data set, how can you observe visually the relationship between the two measurements?

```r
> library(ISwR)
> attach(intake)
> intake
```

<table>
<thead>
<tr>
<th></th>
<th>pre</th>
<th>post</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5260</td>
<td>3910</td>
</tr>
<tr>
<td>2</td>
<td>5470</td>
<td>4220</td>
</tr>
<tr>
<td>3</td>
<td>5640</td>
<td>3885</td>
</tr>
<tr>
<td>4</td>
<td>6180</td>
<td>5160</td>
</tr>
<tr>
<td>5</td>
<td>6390</td>
<td>5645</td>
</tr>
<tr>
<td>6</td>
<td>6515</td>
<td>4680</td>
</tr>
<tr>
<td>7</td>
<td>6805</td>
<td>5265</td>
</tr>
</tbody>
</table>
Let's jump right into it

8 7515 5975
9 7515 6790
10 8230 6900
11 8770 7335

- It’s data from the same 11 women that are measured twice for their daily intake.
A scatterplot works just fine

```r
> print(xyplot(pre ~ post, data = intake,
+    type = c("o", "g"), pch = 16))
```
A scatterplot works just fine
Paired t test

- So, what do we conclude with a significance level of 5%?
Paired t test

So, what do we conclude with a significance level of 5%?

> t.test(pre, post)

Welch Two Sample t-test

data: pre and post
t = 2.6242, df = 19.92, p-value = 0.01629
alternative hypothesis: true difference in means is not 0
95 percent confidence interval:
 270.5633 2370.3458
sample estimates:
mean of x mean of y
 6753.636 5433.182
Paired t test

```r
> t.test(pre, post, paired = TRUE)
Paired t-test

data:  pre and post
t = 11.9414, df = 10, p-value = 3.059e-07
alternative hypothesis: true difference in means is not 0
95 percent confidence interval:
  1074.072 1566.838
sample estimates:
mean of the differences
  1320.455
```
htest object

- Note that we can save the result in an object and extract the information later on:

```r
> res <- t.test(pre, post, paired = TRUE)
> class(res)
[1] "htest"

> names(res)
[1] "statistic"   "parameter"
[3] "p.value"     "conf.int"
[5] "estimate"    "null.value"
[7] "alternative" "method"
[9] "data.name"

> res$p.value
```
htest object

3.059021e-07

This will be true for all hypothesis testing functions.
So...

- How do you find more functions for doing hypothesis testing?
So...

- Simply use `apropos!!`

  ```r
  > apropos("test")
  
  [1] ".valueClassTest"
  [2] "ansari.test"
  [3] "bartlett.test"
  [4] "binom.test"
  [5] "Box.test"
  [6] "chisq.test"
  [7] "cor.test"
  [8] "file.test"
  [9] "fisher.test"
 [10] "fligner.test"
  ```
So...

[12] "kruskal.test"
[13] "ks.test"
[14] "mantelhaen.test"
[15] "mauchley.test"
[16] "mauchly.test"
[17] "mcnemar.test"
[18] "mood.test"
[19] "oneway.test"
[20] "pairwise.prop.test"
[21] "pairwise.t.test"
[22] "pairwise.wilcox.test"
[23] "poisson.test"
[24] "power.anova.test"
[25] "power.prop.test"
So...

[26] "power.t.test"
[27] "PP.test"
[28] "prop.test"
[29] "prop.trend.test"
[30] "quade.test"
[31] "shapiro.test"
[32] "t.test"
[33] "testInheritedMethods"
[34] "testPlatformEquivalence"
[35] "testVirtual"
[36] "var.test"
[37] "wilcox.test"
Practice I

Do the values from the react data set look reasonably normally distributed? Does the mean differ significantly from zero according to a t test?

> `qqnorm(react, main = "reasonably normal")`
Practice I

reasonably normal

Theoretical Quantiles
Sample Quantiles

Theoretical Quantiles
Sample Quantiles
Practice I

> t.test(react)

One Sample t-test

data: react
t = -7.7512, df = 333, p-value = 1.115e-13
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -0.9985214 -0.5942930
sample estimates:
 mean of x
-0.7964072
Practice I

> t.test(react)$p.value < 0.05

[1] TRUE
Practice II

In the data set vitcap, use a t test to compare the vital capacity for the two groups. Calculate a 99% CI for the difference. The result of this comparison may be misleading. Why?

```r
> var.test(vital.capacity ~ group,
+ data = vitcap)

F test to compare two variances

data:  vital.capacity by group
F = 2.3105, num df = 11, denom df = 11, p-value = 0.1806
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.6651437  8.0260128
```
Practice II

sample estimates:
ratio of variances
 2.310509

> t.test(vital.capacity ~ group,
+ conf = 0.99, data = vitcap)

Welch Two Sample t-test

data: vital.capacity by group
t = -2.9228, df = 19.019, p-value = 0.008724
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:
 -2.06447665 -0.02219002
Practice II

sample estimates:
mean in group 1 mean in group 3
3.949167 4.992500
Practice III

Perform graphical checks on the assumptions for a paired t test in the intake data set.

> qqnorm(intake$post - intake$pre)
Practice III

Normal Q–Q Plot

Theoretical Quantiles

Sample Quantiles

Theoretical Quantiles

Sample Quantiles
> boxplot(intake$pre, intake$post)
Practice III
> hist(intake$post - intake$pre,
+ prob = TRUE, col = "light blue")
> lines(density(intake$post - intake$pre),
+ col = "red")
Practice III

Histogram of intake$post - intake$pre

Density

intake$post - intake$pre

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600

0.0000 0.0004 0.0008 0.0012

58 / 49
The function `shapiro.test` computes a test of normality based on the degree of linearity of the Q-Q plot. Apply it to the `react` data. Does it help to remove outliers?

```r
> shapiro.test(react)

Shapiro-Wilk normality test

data:  react
W = 0.957, p-value = 2.512e-08

> shapiro.test(react[-c(1, 334)])

Shapiro-Wilk normality test

data:  react[-c(1, 334)]
W = 0.9687, p-value = 1.376e-06
```
Practice IV

> `qqnorm(react[-c(1, 334)])`
Practice IV

Normal Q–Q Plot

Theoretical Quantiles

Sample Quantiles

Theoretical Quantiles

Sample Quantiles
Practice V

The crossover trial in ashina can be analysed for a drug effect in a simple way (how?) if you ignore a potential period effect. However, you can do better. Hint: Consider the intra-individual differences; if there were only a period effect present, how should the difference behave in the two groups? Compare the results of the simple method and the improved method.

```r
> attach(ashina)
> t.test(vas.active, vas.plac, paired = TRUE)
```
Practice V

Paired t-test

data: vas.active and vas.plac
t = -3.2269, df = 15, p-value = 0.005644
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -71.1946 -14.5554
sample estimates:
mean of the differences
 -42.875

> t.test((vas.active - vas.plac)[grp == + 1], (vas.plac - vas.active)[grp == + 2])
Practice V

Welch Two Sample t-test

data: (vas.active - vas.plac)[grp == 1] and (vas.plac - vas.active)
t = -3.2517, df = 13.97, p-value = 0.005807
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -130.56481 -26.76853
sample estimates:
 mean of x mean of y
 -53.50000 25.16667
Practice VI

Perform 10 one-sample t tests on simulated normally distributed data sets of 25 observations each. Repeat the experiment, but instead simulate samples from a different distribution; try the t distribution with 2 degrees of freedom and the exponential distribution (in the latter case, test for the mean being equal to 1). Can you find a way to automate this so that you can have a larger number (say 10k) of replications?

> `t.test(rnorm(25))$p.value`

[1] 0.6118598

> `t.test(rt(25, df = 2))$p.value`

[1] 0.7829499

> `t.test(rexp(25), mu = 1)`$p.value

65 / 49
Practice VI

[1] 0.5847691

> x <- replicate(10000, t.test(rexp(25),
+ mu = 1)$p.value)
> qqplot(sort(x), ppoints(10000),
+ type = "l", log = "xy")
Practice VI
Practice VII

Calculate manually the equivalent to the one sample t test for the daily vector:

```r
> t.test(daily, mu = 7725)$p.value
[1] 0.01984965

> tvalue <- (mean(daily) - 7725)/(sd(daily)/sqrt(length(daily)))
> pt(tvalue, df = length(daily) - 1) * 2
[1] 0.01984965
```
Session Information

> sessionInfo()

R version 2.12.0 (2010-10-15)
Platform: i386-pc-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats graphics grDevices
[4] utils datasets methods
[7] base

other attached packages:
[1] lattice_0.19-13 ISwR_2.0-5
Session Information

loaded via a namespace (and not attached):
[1] grid_2.12.0