Introduction to R

BIOCONDUCTOR

Educational Materials
(©)2007 S. Falcon, R. Thaka, and R. Gentleman

Data Structures

e R has a rich set of self-describing data structures.
> class(z)
[1] "character"
> class(x)
[1] "data.frame"
> x[1:2,]

type time
1 case 0.6291721
2 case 0.1190050

e There is no need to declare the types of the variables.

Data Structures (continued)
vector - arrays of the same type
list - can contain objects of different types
environment - hashtable
data.frame - table-like
factor - categorical
Classes - arbitrary record type

function

Atomic Data Structures
e In R, the basic data types are vectors, not scalars.
e A vector contains an indexed set of values that are all of the
same type:
— logical
— numeric
— complex
— character
e The numeric type can be further broken down into integer,

single, and double types (but this is only important when

making calls to foreign functions, eg. C or Fortran.)

Creating Vectors
There are two symbols that can be used for assignment: <- and =.
> v <- 123
[1] 123
> s <- "a string"
[1] "a string"
> t <- TRUE
[1] TRUE
> length(letters)
[1] 26
> letters

[1] |lall llbll IICII lldll llell llfll llgll Ilhll llill IIJ' n llkll lllll Ilmll llnll lloll llpll

[17] Ilqll llrll IISII lltll llull llVll llWll IIX" llyll IIZII

Functions for Creating Vectors
e C - concatenate
e : - integer sequence, seq - general sequence
e rep - repetitive patterns

e vector - vector of given length with default value
> seq(1, 3)
[11 1 2 3
> 1:3
[1] 1 2 3
> rep(1:2, 3)
[1] 121212
> vector (mode="character", length=5)

[1] nmo oo nonnonn

Matrices and n-Dimensional Arrays
e Can be created using matrix and array.
e Are represented as a vector with a dimension attribute.

e left most index is fastest (like Fortran or Matlab)

Matrix Examples

> x <- matrix(1:10, nrow=2)
> dim(x)

[1] 2 5

> X

[,11 [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> as.vector(x)

[1] 1 2 3 4 5 6 7 8 9 10

Naming

The elements of a vector can (and often should) be given names.
Names can be specified

e at creation time

e later by using names, dimnames, rownames, colnames

> x <= c(a=0, b=2)
> X

ab
0 2

> names (x) <- c("Australia", "Brazil')

> X

Australia Brazil
0 2

Naming (continued)

> x <- matrix(c(4, 8, 5, 6, 4, 2, 1, 5, 7), nrow=3)
> dimnames (x) <- list(

+ year = c("2005", "2006", "2007"),

+ "mode of transport" = c("plane", "bus", "boat"))
> x

mode of transport

year plane bus boat

2005 4 6 1
2006 8 4 5
2007 5 2 7

10

Subsetting

One of the most powerful features of R is its ability to

manipulate subsets of vectors and arrays.
Subsetting is indicated by [,].

Note that [is actually a function (try get("[")). x[2, 3] is
equivalent to "["(x, 2, 3). Its behavior can be customized

for particular classes of objects.

The number of indices supplied to [must be either the

dimension of x or 1.

11

Subsetting with Positive Indices
e A subscript consisting of a vector of positive integer values is
taken to indicate a set of indices to be extracted.

> x <-1:10
> x[2]

[1] 2
> x[1:3]
[11] 1 2 3
e A subscript which is larger than the length of the vector being
subsetted produces an NA in the returned value.
> x[9:11]
[1] 9 10 NA

12

Subsetting with Positive Indices (continued)
e Subscripts which are zero are ignored and produce no

corresponding values in the result.

> x[0:1]

[1] 1

> x[c(0, 0, 0)]

integer (0)

e Subscripts which are NA produce an NA in the result.
> x[c(10, 2, NA)]
[1] 10 2 NA

13

Assignments with Positive Indices

e Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).

> x[2] <- 200
> x[8:10] <- 10
> X

[1] 1200 3 4 5 6 7 10 10 10

e If a zero or NA occurs as a subscript in this situation, it is

ignored.

14

Subsetting with Negative Indexes

A subscript consisting of a vector of negative integer values is
taken to indicate the indices which are not to be extracted.

> x[-(1:3)]
[1] 4 5 6 7 10 10 10

Subscripts which are zero are ignored and produce no

corresponding values in the result.
NA subscripts are not allowed.

Positive and negative subscripts cannot be mixed.

15

Assignments with Negative Indexes

e Negative subscripts can appear on the the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).

> x =1:10
> x[-(8:10)] = 10
> X

[1] 10 10 10 10 10 10 10 8 9 10
e Zero subscripts are ignored.

e NA subscripts are not permitted.

16

Subsetting by Logical Predicates
e Vector subsets can also be specified by a logical vector of TRUES
and FALSEs.
>x =1:10
>x > 5
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x > 5]

[1] 6 7 8 9 10

e NA values used as logical subscripts produce NA values in the
output.

e The subscript vector can be shorter than the vector being
subsetted. The subscripts are recycled in this case.

e The subscript vector can be longer than the vector being
subsetted. Values selected beyond the end of the vector
produce NAs.

17

Subsetting by Name
e If a vector has named elements, it is possible to extract subsets
by specifying the names of the desired elements.

> x <- c(a=1, b=2, c=3)

> X[C(”C”, Hall, ”fOO”)J

C a <NA>
3 1 NA

e If several elements have the same name, only the first of them

will be returned.

e Specifying a non-existent name produces an NA in the result.

18

Subsetting matrices

when subsetting a matrix, missing subscripts are treated as if
all elements are named; so x[1,] corresponds to the first row
and x[,3] to the third column.

for arrays, the treatment is similar, for example y[,1,].

these can also be used for assignment, x[1,]1=20

19

Subsetting Arrays

e Rectangular subsets of arrays obey similar rules to those which
apply to vectors.

e One point to note is that arrays can also be treated as vectors.
This can be quite useful.

> x = matrix(1:9, ncol=3)
> x[x> 6]
[1] 7 8 9

> x[row(x) > col(x)] =0
> X

[,11 [,2] [,3]
[1,] 1 4 7

[2,] 0 5 8
[3,] 0 0 9

20

Custom Subsetting Example

> library("Biobase")
> data(sample.ExpressionSet)

> class(sample.ExpressionSet)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

> dim(sample.ExpressionSet)

Features Samples
500 26

> slotNames (sample.ExpressionSet)

[1] "assayData" "phenoData"

[4] "experimentData" "annotation"

21

"featureData"

.__classVersion__"

Custom Subsetting Example
> sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)
assayData: 500 features, 26 samples
element names: exprs, se.exprs
phenoData
sampleNames: A, B, ..., Z (26 total)
varLabels and varMetadata description:
sex: Female/Male
type: Case/Control
score: Testing Score
featureData
featureNames: AFFX-MurlIL2_at, AFFX-MurIL1O_at,
fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'

Annotation: hgu9bav2

22

*

31739_at

(

Custom Subsetting Example
> sample.ExpressionSet[1:2, 2:5]

ExpressionSet (storageMode: lockedEnvironment)
assayData: 2 features, 4 samples
element names: exprs, se.exprs
phenoData
sampleNames: B, C, D, E
varLabels and varMetadata description:
sex: Female/Male
type: Case/Control
score: Testing Score
featureData
featureNames: AFFX-MurIL2_at, AFFX-MurIL10_at
fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'

Annotation: hgu9bav2

23

Vectorized Arithmetic

e Most arithmetic operations in the R language are vectorized.
That means that the operation is applied element-wise.

> 1:3 + 10:12
[1] 11 13 15
e In cases where one operand is shorter than the other the short

operand is recycled, until it is the same length as the longer
operand.

> 1+ 1:5

[1] 2 3456

> paste(1:5, "A", sep="")
[1] "1A" "2A" W3A" "4AM MBAN

e Many operations which need to have explicit loops in other
languages do not need them with R. You should vectorize any

functions you write.

24

Lists

e In addition to atomic vectors, R has a number of recursive data
structures. Among the important members of this class are
lists and environments.

e A list is an ordered set of elements that can be arbitrary R
objects (vectors, other lists, functions, ...). In contrast to
atomic vectors, which are homogeneous, lists and environments
can be heterogeneous.
> 1st = list(a=1:3, b = "ciao", ¢ = sqrt)
> st

$a
[1] 1 2 3

$b

[1] "ciao"

$c

function (x) .Primitive("sqrt")
> 1st$c(81)
[1] 9

25

Environments

e One difference between lists and environments is that there is
no concept of ordering in an environment. All objects are
stored and retrieved by name.

> el = new.env()

> el[["a"]] <- 1:3

> assign("b", "ciao", el)
> 1s(el)

[1] llall ll'bll

¢ Random access to large environment can be sped up by using

hashing (see the manual page of new.env).

e Names must match exactly (for lists, partial matching is used

for the $ operator).

26

Subsetting and Lists

Lists are useful as containers for grouping related thing

together (many R functions return lists as their values).

Because lists are a recursive structure it is useful to have two

ways of extracting subsets.

The [] form of subsetting produces a sub-list of the list being
subsetted.

The [[1] form of subsetting can be used to extract a single

element from a list.

27

List Subsetting Examples

e Using the [] operator to extract a sublist.
> 1st[1]

$a
[1] 1 2 3

e Using the [[1] operator to extract a list element.
> 1st[[1]]
[11 1 23

e As with vectors, indexing using logical expressions and names

is also possible.

28

List Subsetting by Name

e The dollar operator provides a short-hand way of accessing list
elements by name. This operator is different from all other
operators in R, it does not evaluate its second operand (the
string).
> 1st$a
[1] 1 23
> 1st[["a"]]

[1] 1 2 3

e For $§ partial matching is used, for [[it is not by default, but

can be turned on.

29

Accessing Elements in an Environment

e Access to elements in environments can be through, get,
assign, mget.

e You can also use the dollar operator and the [[]] operator,
with character arguments only. No partial matching is done.
> el$a
[11 1 2 3
> el[["p"]]

[1] "ciao"

30

Assigning values in Lists and Environments

e [tems in lists and environments can be (re)placed in much the
same way as items in vectors are replaced.

> 1st[[1]] = 1ist(2,3)
> 1st[[1]]

[[1]1]
[1] 2

[[2]]
[1] 3

> el$b = 1:10
> el$b

(1] 1 2 3 4 5 6 7 8 910

31

Data Frames

e Data frames are a special R structure used to hold a set of
spreadsheet like table. In a data.frame, the observations are

the rows and the covariates are the columns.

e Data frames can be treated like matrices and be indexed with
two subscripts. The first subscript refers to the observation,

the second to the variable.

e Data frames are really lists, and list subsetting can also be used

on them.

32

Data Frames (continued)

> df <- data.frame(type=rep(c("case", "control"), c(2, 3)), time=rexp(5))
> df

type time
case 1.610914
case 0.721062
control 1.577255
control 1.873261
control 2.059024

o> W N+

> df$time

[1] 1.610914 0.721062 1.577255 1.873261 2.059024
> names (df)

[1] "type" "time"

> rn <- paste("id", 1:5, sep="")
> rownames (df) <- rn
> df[1:2,]

type time
idl case 1.610914
id2 case 0.721062

33

Getting Help

There are a number of ways of getting help:
e help.start and the HTML help button in the Windows GUI
e help and 7: help("data.frame")
e help.search, apropos
e RSiteSearch (requires internet connection)
¢ Online manuals

e Mailing lists

34

Packages

In R the primary mechanism for distributing software is via
packages

CRAN is the major repository for packages.

You can either download packages manually or use
install.packages or update.packages to install and update
packages.

In addition, on Windows and other GUIs, there are menu items
that facilitate package downloading and updating.

It is important that you use the R package installation
facilities. You cannot simply unpack the archive in some

directory and expect it to work.

35

Packages - Bioconductor

Bioconductor packages are hosted in CRAN-style repositories

and are accessible using install.packages.

The most reliable way to install Bioconductor packages (and
their dependencies) is to use biocLite.

Bioconductor has both a release branch and a development
branch. Each Bioconductor release is compatible with its
contemporary R release.

Bioconductor packages have vignettes.

36

Name spaces

Having many more packages, written by many different people,

can cause some problems.

When packages are loaded into R, they are essentially attached

to the search list, see search.

This creates the possibility of variable masking: the same name
being for different functions in different packages.

Name spaces were introduced in R 1.7.0 to alleviate the

problem.

37

Control-Flow

R has a standard set of control flow functions:
e Looping: for, while and repeat.

e (Conditional evaluation: if and switch.

38

Two Useful String Functions
1. Concatenate strings: paste

2. Search strings: grep

39

Example: paste

> s <- c("apple", "banana", "lychee")
> paste(s, "X", sep="_")

[1] "apple_X" "banana_X" "lychee_X"
> paste(s, collapse=", ")

[1] "apple, banana, lychee"

40

Example: grep

> library("ALL")
> data(ALL)
> class(ALL$mol.biol)

[1] "factor"

> negldx <- grep("NEG", ALL$mol.biol)
> negldx[1:10]

[1] 2 5 6 7 8 9 12 14 16 21

41

The apply Family

e A natural programming construct in R is to apply the same
function to elements of a list, of a vector, rows of a matrix, or

elements of an environment.

e The members of this family of functions are different with
regard to the data structures they work on and how the

answers are dealt with.

e Some examples, apply, sapply, lapply, mapply, eapply.

42

apply
e apply applies a function over the margins of an array.

e For example,
> apply(x, 2, mean)
computes the column means of a matrix x, while
> apply(x, 1, median)

computes the row medians.

43

apply
apply is usually not faster than a for loop. But it is more elegant.

> a=matrix(runif(le6), ncol=10)

> system.time ({
+ s1 = apply(a, 1, sum)
+ })

user system elapsed
1.186 0.028 1.215

system.time ({

s2 = numeric(arow(a))

>

+

+ for(i in 1:nrow(a))
+ s2[i] = sum(ali,])
+

+)

user system elapsed
0.667 0.007 0.673

See also: rowSums and colSums.

44

Writing Functions

e Writing R functions provides a means of adding new
functionality to the language.

e Functions that a user writes have the same status as those
which are provided with R.

e Reading the functions provided with the R system is a good

way to learn how to write functions.

45

A Simple Function

e Here is a function that computes the square of its argument.

> square = function(x) x*x
> square(10)

[1] 100

e Because the function body is vectorized, so is this new function.
> square(1:4)
[11] 1 4 9 16

46

Composition of Functions

e Once a function is defined, it is possible to call it from other
functions.

> sumsq = function(x) sum(square(x))
> sumsq(1:10)

[1] 385

47

Returning Values

Any single R object can be returned as the value of a function;

including a function.

If you want to return more than one object, you should put
them in a list (usually with names), or an S4 object, and return
that.

The value returned by a function is either the value of the last

statement executed, or the value of an explicit call to return.

return takes a single argument, and can be called from any

where in a function.

48

Control of Evaluation

In some cases you want to evaluate a function that may fail,
but you do not want to get stuck with an error.

In these cases the function try can be used.

try(expr) will either return the value of the expression expr,
or an object of class try-error

tryCatch provides a more configurable mechanism for

condition handling and error recovery.

49

Object Oriented Programming

e Object oriented programming is a style of programming where
one attempts to have software reflections (“models”) of
application-oriented concepts and to write functions (methods)

that operate on these objects.

e The R language has two different object oriented paradigms,
one S3 is older and should not be used for new projects. The

second, S4 is newer and is currently under active development.

e These objects systems are more like OOP in Scheme, Lisp or
Dylan than they are like OOP in Java or C++.

50

Classes
e In OOP there are two basic ingredients, objects and methods.

e An object is an instance of a class, and all objects of a

particular class have some common characteristics.

e inheritance or class extension: Class B is said to extend class A
if a member of B has all the attributes that a member of A

does, plus some other attributes.

51

Generic Functions

e A generic function is a dispatcher that examines the classes(!)
of its arguments and invokes the most appropriate specific
method.

e Methods are “normal” functions that are registered with generic
functions, by indicating their existence together with the

number and classes of its arguments (its “signature”).

e In the previous example, if a generic function is called with an
instance of class B and there is no class B method, a class A
method could be used.

52

Classes

e A class consists of a set of slots each containing a specific type
(character, numeric, etc.).

e methods can be defined for classes. A rectangle class that has
slots for length and width could have an area method.

e Slots are accessed using @, but accessor methods are preferred.

53

Classes (S4 example)

> setClass("Person", representation(name="character",
+ height="numeric",

+ country="character"))
[1] "Person"

> p <- new("Person", name="Alice", height=5.0, country="UK")
>p

An object of class "Person"
Slot "name":
[1] "Alice"

Slot "height":
[1] &

Slot "country":

[1] nUKn
> p@name
[1] "Alice"

54

S3

S3 OOP no real mechanism for making sure that objects from

a specific class have anything in common - it is just expected.

One can make any object an instance of class foo, by assigning

a class attribute, class(x) = "foo".

S3 handles inheritance by setting several different class

attributes (but this can lead to confusion).

S3 is not suitable for complicated or multi-author projects.

55

References

The New S Language, Statistical models in S, Programming
with Data, by John Chambers and various co-authors.

Modern Applied Statistics, S Programming by W. N. Venables
and B. D. Ripley.

Introductory Statistics with R by P. Dalgaard.
Data Analysis and Graphics Using R by J. Maindonald and J.

Braun.

56

