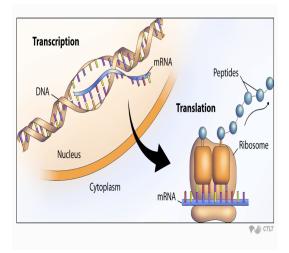
INTRODUCTION	Background 00000000	Motivation 000000	Methods 0000000000	Discussion 00000

Estimating copy number polymorphisms from genotyping arrays

Stephen Cristiano Johns Hopkins University

November 5, 2013


INTRODUCTION	Background	Motivation	Methods	Discussion
	00000000	000000	0000000000	00000

INTRODUCTION INTRODUCTION BACKGROUND Copy number variation Affymetrix **MOTIVATION CNV** estimation Existing methods METHODS Data Outline **Bayesian Mixture Model** Assignment DISCUSSION Complications Software Future considerations

 INTRODUCTION
 Background
 MOTIVATION
 METHODS
 Discussion

 0000000
 000000
 000000000
 000000
 00000

CENTRAL DOGMA OF MOLECULAR BIOLOGY

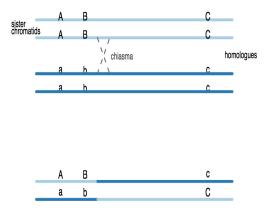
<ロト < 部 ト < 臣 ト < 臣 ト

 INTRODUCTION
 Background
 MOTIVATION
 METHODS
 Discussion

 ••••••••
 ••••••
 •••••
 •••••
 •••••
 •••••
 •••••

COPY NUMBER VARIATION

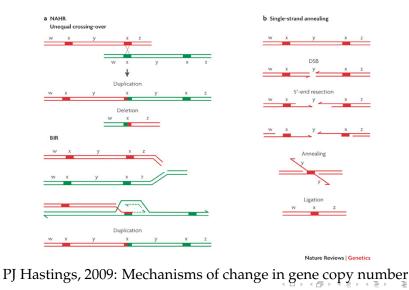
A loss or gain of chromosomal DNA copy number spanning hundreds to thousands of basepairs, or even entire chromosomes (aneuploidy)


INTRODUCTION	BACKGROUND	Motivation	Methods	DISCUSSION
	0000000	000000	0000000000	00000

COPY NUMBER VARIATION

- Structural variation that often arises from abnormal recombination events.
- Defined as 1 kilobase or larger.
- Gain and loss of copy number indicated increase risk to common diseases such as schizophrenia and driving processes of clonal selection in tumors
- ► Preferentially occur in repetitive regions of the genome.
- Accounts for as much as 12% of the human genome.
- Can arise from germ line or somatic mutations. Our work is focused on germline.

INTRODUCTION	BACKGROUND	Motivation	Methods	DISCUSSION
	0000000	000000	0000000000	00000


NORMAL RECOMBINATION DURING MEIOSIS

Johns Hopkins University

INTRODUCTION	Background 0000000	Motivation 000000	Methods 0000000000	Discussion 00000

CHANGE BY HOMOLOGOUS RECOMBINATION

Johns Hopkins University

INTRODUCTION	Background	Motivation	Methods	Discussion
	00000000	000000	0000000000	00000

Note

High throughput genotyping arrays can only detect low-copy repeats (0, 1, 2, 3, or 4+ copies) because of saturation of the intensities.

INTRODUCTION BACKGROUND MC	OTIVATION 1	Methods	DISCUSSION
00000000 00	00000	0000000000	00000

AFFYMETRIX PLATFORM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AFFYMETRIX PLATFORM

- Quickly scan for presence of particular genes in a biological sample.
- Each gene represented by a unique set of probe pairs (roughly 12-12 probe pairs per probe set)
- Each spot on array represents a single probe millions of copies.
- Probes fixed to array.
- ► A tissue sample is prepared so its mRNA has fluorescent tags.
- mRNA samples hybridize to probes.

INTRODUCTION	BACKGROUND	MOTIVATION	Methods	DISCUSSION
	0000000	000000	0000000000	00000

OTHER PLATFORMS

- Other genotyping arrays (Illumina etc).
- Comparative genomic hybridization (CGH).
- Next generation sequencing: still very challenging for surveying copy number.

INTRODUCTION	Background	MOTIVATION	Methods 0000000000	Discussion 00000

CNV ESTIMATION

There are multiple modes of CNV estimation:

- ► By sample.
- ► By locus.
- ► Hybrid approach.

INTRODUCTION	Background	Motivation	Methods	Discussion
	0000000	o●oooo	0000000000	00000

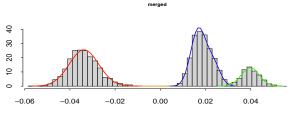
GOAL

Can we improve copy number estimates at copy number polymorphic regions?

INTRODUCTION	Background	MOTIVATION	Methods	DISCUSSION
	0000000	00000	0000000000	00000

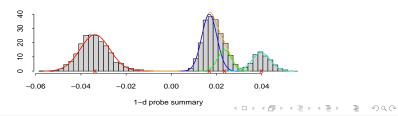
Software

- ► Birdsuite (Korn, 2008).
- ► CNVtools (Barnes, 2008).
- ▶ cnvCall (Cardin, 2011).
- ► CNPbayes (Cristiano, 2013).


INTRODUCTION	Background	Motivation	Methods	Discussion
	00000000	000000	0000000000	00000
C_{ARDIN} (2))11)			

- Cardin (2011)
 - "Bayesian hierarchical mixture modeling to assign copy number from a targeted CNV array"
 - ► For robustness, uses a mixture of t-distributions.
 - Introduces a hierarchical structure over the mean and variance across samples from different data collections.
 - Uses merging algorithm to combine neighboring components with significant overlap.
 - ► Implemented in R package cnvCall.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

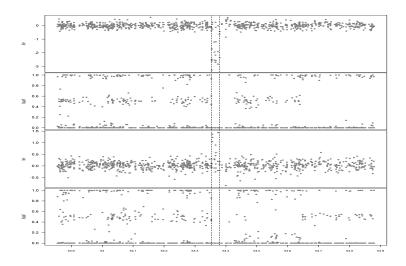

INTRODUCTION	Background	Motivation	Methods	Discussion
	00000000	○○oo●o	0000000000	00000

CNVCALL

1-d probe summary

INTRODUCTION	Background	Motivation	Methods	Discussion
	00000000	○○○○○●	0000000000	00000

CNVCALL


- Our model is most similar to CNV call.
- However, they assume copy number polymorphic regions are known.
- CNP regions will differ between populations of different ancestries, etc.
- We define CNP regions on the basis of Hidden Markov Model calls.

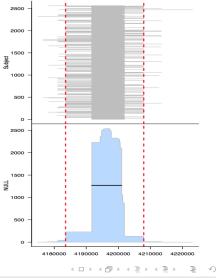
INTRODUCTION	Background 0000000	Motivation 000000	Methods ••••••	Discussion 00000

Data

- 8,598 participants of European ancestry who participated in the Atherosclerosis Risk in Communities (ARIC) Study
- Genomic data: log R ratios and B allele frequencies measured from Affymetrix 6.0 arrays

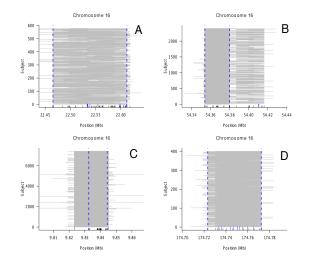
LOW LEVEL SUMMARIES FOR 2 SAMPLES

Johns Hopkins University


INTRODUCTION	Background	Motivation	Methods	Discussion
	00000000	000000	00 00 000000	00000
Method				

- A 6 state hidden Markov model was fit genome-wide to each subject.
 - Approximately 500 regions were identified for which deletions or duplications are common in greater than 1% of subjects.
 - GenomicRanges used to find copy number polymorphic loci from the HMM calls.
 - A Bayesian finite Gaussian mixture model fit to the average log R ratios improves copy number estimates.

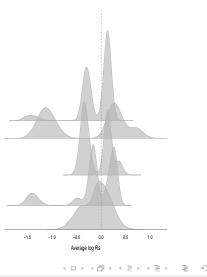
INTRODUCTION	Background	Motivation	Methods	DISCUSSION
	0000000	000000	00 00 000000	00000


DEFINING REGIONS

- HMM gives non-perfectly overlapping sample specific regions.
- GenomicRanges used to to find copy number polymorphic loci from HMM calls.
- Regions can be complex.
- There may be large gaps in coverage of genotyping arrays.

INTRODUCTION	Background	Motivation	Methods	DISCUSSION
	0000000	000000	0000000000	00000

DEFINING REGIONS

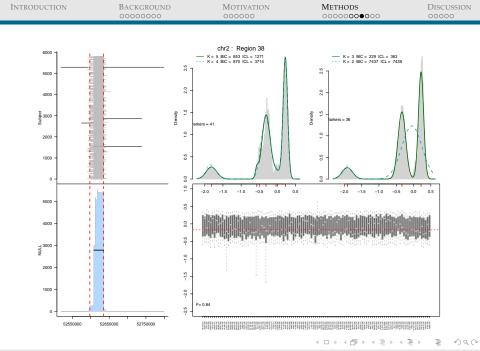


<ロ><(1)</p>

EMPIRICAL ESTIMATES

- Mean and variances differ between loci .
- Expected value for diploid component is 0.
- When many deletions or duplications present, the diploid mean is biased away from 0.

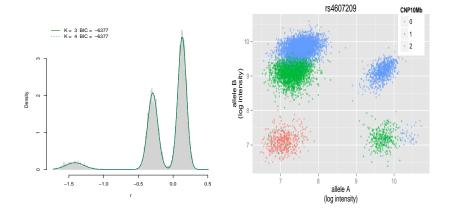
MIXTURE MODEL


- The average log R ratios follow a mixture of Gaussian distributions.
- ► A finite dimensional Gaussian mixture model assumes data y = (y₁,..., y_n) ∈ Rⁿ are a sample from a from a probability density function of the form

$$f(\mathbf{y}|K,\theta,\sigma^2,p) = \sum_{k=1}^{K} p_k \phi_k(\mathbf{y}|\theta_k,\sigma_k^2)$$

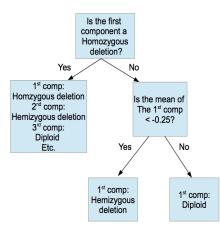
Where K represents the number of components, $\phi(\cdot | \theta, \sigma^2)$ is a Gaussian distribution with mean θ and variance σ^2 and $\sum_{k=1}^{K} p_k = 1$.

INTRODUCTION	Background	Motivation	Methods	Discussion
	0000000	000000	○○○○○●●○○○○	00000


- Sample from a constrained full conditional on the θ's ensure identifiability and help convergence.
- ► Run chains of 5000 with a burn-in of 1000 for the 415 regions for each of K = 1...5 and choose constraints to ensure the means have a separation of 0.2.
- ► The Bayesian Information Criterion (BIC) was used to assess which of the five models arising from the choices of *K* best fit the data.

Johns Hopkins University

Log-transformed intensities for the A and B allele for a SNP inside one locus on chromosome 4.


INTRODUCTION	Background	Motivation	Methods	Discussion
	00000000	000000	○○○○○○○●○	00000

ASSIGNMENT

- Need a way to infer what copy number state each component is.
- Average log R ratios are biased in CNPs, so we can't assume the component closest to 0 is diploid.
- Many CNPs do not contain SNPs, so information about heterozygosity is often not available.
- On the log-scale, distance between homozygous deletions and hemizygous deletions is large, and homozygous deletions have a large variance relative to the other components.
- ► Homozygous deletions are easy to detect.

INTRODUCTION	Background	Motivation	Methods	DISCUSSION
	0000000	000000	0000000000	00000

AD HOC APPROACH

INTRODUCTION	Background	Motivation	Methods	DISCUSSION
	0000000	000000	0000000000	00000
Ð				

DISCUSSION

- ► We do not necessarily need to use the maximum a priori estimates to infer copy number.
- Our model has the advantage that we can assign a probability to each copy number assignment.
- This uncertainty in copy number estimates can be propagated to association models.

INTRODUCTION	Background 0000000	Motivation 000000	Methods 0000000000	DISCUSSION •••••

COMPLICATIONS

- ► BIC often overestimates the number of components.
- When skew is present in one of the components, a model with an additional component to capture the skew will be preferred.
- A mixture model of skewed normal distributions may be more robust.

SKEW-NORMAL DISTRIBUTION

► A finite dimensional skew-normal mixture model assumes data y = (y₁,..., y_n) ∈ Rⁿ are a sample from a from a probability density function of the form

$$f(\mathbf{y}|K,\theta,\sigma^2,\alpha,p) = \sum_{k=1}^{K} p_k f_{SN_k}(\mathbf{y}|\theta_k,\sigma_k^2,\alpha_k)$$

Where α a skewness parameter.

 Full conditionals are available for the proper parameter transformations and Gibbs sampling is still feasible. (Frühwirth-Schnatter, 2010)

INTRODUCTION	Background 0000000	Motivation 000000	Methods 0000000000	DISCUSSION 00000

Software

- R package CNPbayes available on github.
- MCMC methods implemented using Rcpp for rapid computations.
- Currently being prepared for submission to Bioconductor.

INTRODUCTION	Background	Motivation	Methods	DISCUSSION
	0000000	000000	0000000000	00000

WHAT NEXT

- Develop regression model for associating copy number classification with disease phenotype.
- Batch effects may be present. Consider adding a hierarchical structure to the parameters.
- Compare with other methods.

INTRODUCTION	Background	MOTIVATION	Methods	DISCUSSION
	0000000	000000	0000000000	00000

THANKS

- ► Rob Scharpf
- ► Gary Rosner
- Leonardo and Jean-Philippe