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CENTRAL DOGMA OF MOLECULAR BIOLOGY
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COPY NUMBER VARIATION

A loss or gain of chromosomal DNA copy number spanning
hundreds to thousands of basepairs, or even entire
chromosomes (aneuploidy)
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COPY NUMBER VARIATION

I Structural variation that often arises from abnormal
recombination events.

I Defined as 1 kilobase or larger.

I Gain and loss of copy number indicated increase risk to
common diseases such as schizophrenia and driving
processes of clonal selection in tumors

I Preferentially occur in repetitive regions of the genome.

I Accounts for as much as 12% of the human genome.

I Can arise from germ line or somatic mutations. Our work
is focused on germline.
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NORMAL RECOMBINATION DURING MEIOSIS
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CHANGE BY HOMOLOGOUS RECOMBINATION

PJ Hastings, 2009: Mechanisms of change in gene copy number
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NOTE

High throughput genotyping arrays can only detect low-copy
repeats (0, 1, 2, 3, or 4+ copies) because of saturation of the
intensities.
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AFFYMETRIX PLATFORM
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AFFYMETRIX PLATFORM

I Quickly scan for presence of particular genes in a
biological sample.

I Each gene represented by a unique set of probe pairs
(roughly 12-12 probe pairs per probe set)

I Each spot on array represents a single probe - millions of
copies.

I Probes fixed to array.
I A tissue sample is prepared so its mRNA has fluorescent

tags.
I mRNA samples hybridize to probes.
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OTHER PLATFORMS

I Other genotyping arrays (Illumina etc).

I Comparative genomic hybridization (CGH).

I Next generation sequencing: still very challenging for
surveying copy number.
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CNV ESTIMATION

There are multiple modes of CNV estimation:
I By sample.

I By locus.

I Hybrid approach.

Johns Hopkins University 12 of 35



INTRODUCTION BACKGROUND MOTIVATION METHODS DISCUSSION

GOAL

Can we improve copy number estimates at copy number
polymorphic regions?
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SOFTWARE

I Birdsuite (Korn, 2008).

I CNVtools (Barnes, 2008).

I cnvCall (Cardin, 2011).

I CNPbayes (Cristiano, 2013).

Johns Hopkins University 14 of 35



INTRODUCTION BACKGROUND MOTIVATION METHODS DISCUSSION

CARDIN (2011)

I “Bayesian hierarchical mixture modeling to assign copy
number from a targeted CNV array”

I For robustness, uses a mixture of t-distributions.

I Introduces a hierarchical structure over the mean and
variance across samples from different data collections.

I Uses merging algorithm to combine neighboring
components with significant overlap.

I Implemented in R package cnvCall.
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CNVCALL
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CNVCALL

I Our model is most similar to CNV call.

I However, they assume copy number polymorphic regions
are known.

I CNP regions will differ between populations of different
ancestries, etc.

I We define CNP regions on the basis of Hidden Markov
Model calls.

Johns Hopkins University 17 of 35



INTRODUCTION BACKGROUND MOTIVATION METHODS DISCUSSION

DATA

I 8,598 participants of European ancestry who participated
in the Atherosclerosis Risk in Communities (ARIC) Study

I Genomic data: log R ratios and B allele frequencies
measured from Affymetrix 6.0 arrays
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LOW LEVEL SUMMARIES FOR 2 SAMPLES

Johns Hopkins University 19 of 35



INTRODUCTION BACKGROUND MOTIVATION METHODS DISCUSSION

METHOD

I A 6 state hidden Markov model was fit genome-wide to
each subject.

I Approximately 500 regions were identified for which
deletions or duplications are common in greater than 1%
of subjects.

I GenomicRanges used to find copy number polymorphic
loci from the HMM calls.

I A Bayesian finite Gaussian mixture model fit to the
average log R ratios improves copy number estimates.
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DEFINING REGIONS

I HMM gives
non-perfectly
overlapping sample
specific regions.

I GenomicRanges used
to to find copy number
polymorphic loci from
HMM calls.

I Regions can be
complex.

I There may be large
gaps in coverage of
genotyping arrays.
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DEFINING REGIONS
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EMPIRICAL ESTIMATES

I Mean and variances
differ between loci .

I Expected value for
diploid component is 0.

I When many deletions
or duplications present,
the diploid mean is
biased away from 0.

Average log Rs

−1.5 −1.0 −0.5 0.0 0.5 1.0
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MIXTURE MODEL

I The average log R ratios follow a mixture of Gaussian
distributions.

I A finite dimensional Gaussian mixture model assumes
data y = (y1, . . . , yn) ∈ Rn are a sample from a from a
probability density function of the form

f (y|K, θ, σ2, p) =
K∑

k=1

pkφk(y|θk, σ
2
k )

Where K represents the number of components, φ(· |θ, σ2)
is a Gaussian distribution with mean θ and variance σ2

and
∑K

k=1 pk = 1.
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I Sample from a constrained full conditional on the θ’s
ensure identifiability and help convergence.

I Run chains of 5000 with a burn-in of 1000 for the 415
regions for each of K = 1 . . . 5 and choose constraints to
ensure the means have a separation of 0.2.

I The Bayesian Information Criterion (BIC) was used to
assess which of the five models arising from the choices of
K best fit the data.
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Log-transformed intensities for the A and B allele for a SNP
inside one locus on chromosome 4.
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ASSIGNMENT

I Need a way to infer what copy number state each
component is.

I Average log R ratios are biased in CNPs, so we can’t
assume the component closest to 0 is diploid.

I Many CNPs do not contain SNPs, so information about
heterozygosity is often not available.

I On the log-scale, distance between homozygous deletions
and hemizygous deletions is large, and homozygous
deletions have a large variance relative to the other
components.

I Homozygous deletions are easy to detect.
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AD HOC APPROACH
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DISCUSSION

I We do not necessarily need to use the maximum a priori
estimates to infer copy number.

I Our model has the advantage that we can assign a
probability to each copy number assignment.

I This uncertainty in copy number estimates can be
propagated to association models.
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COMPLICATIONS

I BIC often overestimates the number of components.

I When skew is present in one of the components, a model
with an additional component to capture the skew will be
preferred.

I A mixture model of skewed normal distributions may be
more robust.
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SKEW-NORMAL DISTRIBUTION

I A finite dimensional skew-normal mixture model assumes
data y = (y1, . . . , yn) ∈ Rn are a sample from a from a
probability density function of the form

f (y|K, θ, σ2, α, p) =
K∑

k=1

pkfSNk(y|θk, σ
2
k , αk)

Where α a skewness parameter.

I Full conditionals are available for the proper parameter
transformations and Gibbs sampling is still feasible.
(Frühwirth-Schnatter, 2010)
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SOFTWARE

I R package CNPbayes available on github.

I MCMC methods implemented using Rcpp for rapid
computations.

I Currently being prepared for submission to Bioconductor.
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WHAT NEXT

I Develop regression model for associating copy number
classification with disease phenotype.

I Batch effects may be present. Consider adding a
hierarchical structure to the parameters.

I Compare with other methods.
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