DEXSeq paper discussion

L Collado-Torres

December 10th, 2012

Gene Expression¹

¹Source: http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/ApplExpression.shtml

High-Throughput Sequencing ²

Top: CATCGT Bottom: CCCCCC

²Source: Metzker, Sequencing technologies — the next generation, 2010, Nat Rev Genet

Alignment (Mapping) ³

³Source: Trapnell *et al*, How to map billions of short reads onto genomes, 2009, Nat Biotech

What can we find? ⁴

a Discovery of new genes

⁴Source: Sorek and Cossart, Prokaryotic transcriptomics a new view on regulation, physiology and pathogenicity, 2010, Nat Rev Genet

What can we find? 5

b Correction of gene annotation

⁵Source: Sorek and Cossart, Prokaryotic transcriptomics a new view on regulation, physiology and pathogenicity, 2010, Nat Rev Genet

What can we find? ⁶

c Definition of UTRs

⁶Source: Sorek and Cossart, Prokaryotic transcriptomics a new view on regulation, physiology and pathogenicity, 2010, Nat Rev Genet

What can we find? 7

d Operon structures

⁷Source: Sorek and Cossart, Prokaryotic transcriptomics a new view on regulation, physiology and pathogenicity, 2010, Nat Rev Genet

Main ideas

Compare two or more conditions of interest to find the DE exons (DEX).

- Focus on DE: assume a transcript inventory
- Account for biological variation
- Use GLMs
- Fine tuning to make it fast, control for false positives, and when possible increase power

Simplifying the exome: counting bins ⁸

⁸Source: Anders, Reyes, Huber; Detecting differential usage of exons from RNA-seq data, 2012, Genome Research

Model

Using count data and assume it follows a negative binomial distribution

$$\mathcal{K}_{ijl} \sim \mathit{NB}\left(ext{mean} \; = s_{j} \mu_{ijl}, ext{dispersion} \; = lpha_{il}
ight)$$

- counting bin *I*
- gene i
- sample $j = 1, \ldots, m$
- size factor s_i : needed because each sample is sequenced at a different depth
- α_{il} is the dispersion parameter

Poisson vs NB¹⁰

Poisson GLM

- Outcome $Y \sim Poisson(\mu)$
- Link function: $\log \mu = x'\beta$
- Variance function $Var(Y) = Var(\mu) = \alpha \mu$ where $\alpha = 1$. $\alpha \neq 1$ is the quasi-likelihood approach.

Negative Binomial Model: Gamma-Poisson mixture construction

• Assume unobserved r.v. E where $E \sim Gamma(\theta, 1/\theta)$.

• Mean: $\theta \cdot 1/\theta = 1$, Variance: $\theta \cdot 1/\theta^2 = 1/\theta$.

- Assume that $Y|E \sim Poisson(\mu E)$
- Then Y has a negative binomial distribution with mean μ and variance $\mu+\mu^2/\theta=\mu(1+\mu/\theta)$ 9
- Variance of Y increases quadratically with the mean rather than linearly.

 $^{^{9}}lpha=1/ heta$ in the DEXSeq paper

¹⁰Source: 140.654 2012 slides by Roger Peng

Main log-linear model

$$\log \mu_{ijl} = \beta_i^G + \beta_{il}^E + \beta_{i\rho_j}^C + \beta_{i\rho_jl}^{EC}$$
(2)

• β_i^G : baseline expression strength of gene *i*

- β_{il}^E : log of the expected fraction of the reads mapped to gene *i* that overlap counting bin *l*
- $\beta_{i\rho_i}^C$: log of the fold change in overall expression of gene *i* under condition ρ_j
- ρ_j experimental condition of sample j
- $\beta_{i\rho,l}^{EC}$: effect condition ρ_j has on the fraction of reads falling into bin I

Variability: gene expression + exon usage

- Var. in gene expression: when the total number of transcripts for a gene *i* differs from the expected value under ρ_j
- Var. in exon usage: using different exons or counting bins

$$\log \mu_{ijl} = \beta_i^{\mathsf{G}} + \beta_{il}^{\mathsf{E}} + \beta_{ij}^{\mathsf{S}} + \beta_{i\rho_j l}^{\mathsf{EC}}$$
(3)

Change $\beta_{i\rho_i}^{C}$ by β_{ij}^{S} . Absorbs var. in gene expression.

Dispersion estimates ¹¹

¹¹Source: Anders, Reyes, Huber; Detecting differential usage of exons from RNA-seq data, 2012, Genome Research

Analysis of Deviance ¹²

- Deviance $D(\hat{eta}) = 2\ell^* 2\ell(\hat{eta};y)$ where ℓ^* is the saturated likelihood
- Two spaces for β : small S (nested) and large L with $H_0: \beta \in S$ and $H_a: \beta \in L S$.
- Likelihood ratio

$$LR = \frac{\mathscr{L}(\hat{\beta}_{S}; y)}{\mathscr{L}(\hat{\beta}_{L}; y)}$$

Under H₀, -2 log LR ~ χ²_{|L|-|S|}
Note D(β_S) - D(β_L) = -2[ℓ(β_S; y) - ℓ(β_L; y)] = -2 log LR

¹²Source: 140.654 2012 slides by Roger Peng

Testing for DEX: ANODEV

Fit two models

$$\log \mu_{ijl} = \beta_i^G + \beta_{il}^E + \beta_{ij}^S$$

$$\log \mu_{ijl} = \beta_i^G + \beta_{il}^E + \beta_{ij}^S + \beta_{i\rho_jl}^{EC} \delta_{ll'}$$
(4)
(5)

where

$$\delta_{ll'} = egin{cases} 1 & ext{if } l = l' \ 0 & ext{otherwise} \end{cases}$$

Then test using analysis of deviance (ANODEV) Control FDR by adjusting p-values using Benjamini-Hochberg's method.

Finding DEX: knockdown of *pasilla* on *Drosophila melanogaster* example ¹³

¹³Source http://www-huber.embl.de/pub/DEXSeq/analysis/brooksetal/

Detection power depends on mean ¹⁴

¹⁴Source: reproduced with code from http://genome.cshlp.org/content/suppl/2012/08/20/gr.133744.111.DC1/Supp_II.html

Without considering biological variation ¹⁵

¹⁵Source http://www-huber.embl.de/pub/DEXSeq/analysis/brooksetal/

Interesting comparison

- Mock comparison: check for DEX between replicates from a control condition
- $\bullet~$ Used an FDR of 10%
- DEXSeq: 8 genes (159 in the real control vs treatment comparison)
- Cuffdiff v 1.3.0: 639 genes (37 in real comp.)

This trend continues with other data sets.

Thanks!

- Main source: Anders, Reyes, Huber; Detecting differential usage of exons from RNA-seq data, 2012, Genome Research
- PMID: 22722343.