This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Download the materials for this course with usethis::use_course('lcolladotor/osca_LIIGH_UNAM_2020')
or view online at lcolladotor.github.io/osca_LIIGH_UNAM_2020.
library('scRNAseq')sce.zeisel <- ZeiselBrainData(ensembl = TRUE)
## snapshotDate(): 2019-10-22
## see ?scRNAseq and browseVignettes('scRNAseq') for documentation
## loading from cache
## see ?scRNAseq and browseVignettes('scRNAseq') for documentation
## loading from cache
## see ?scRNAseq and browseVignettes('scRNAseq') for documentation
## loading from cache
## snapshotDate(): 2019-10-29
## loading from cache
## Warning: Unable to map 1565 of 20006 requested IDs.
# Quality controllibrary('scater')is.mito <- which(rowData(sce.zeisel)$featureType == "mito")stats <- perCellQCMetrics(sce.zeisel, subsets = list(Mt = is.mito))qc <- quickPerCellQC(stats, percent_subsets = c("altexps_ERCC_percent", "subsets_Mt_percent"))sce.zeisel <- sce.zeisel[, !qc$discard]
# Library size factorslib.sf.zeisel <- librarySizeFactors(sce.zeisel)# Examine distribution of size factorssummary(lib.sf.zeisel)
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.1754 0.5682 0.8669 1.0000 1.2758 4.0651
hist(log10(lib.sf.zeisel), xlab = "Log10[Size factor]", col = "grey80")
ls.zeisel <- colSums(counts(sce.zeisel))plot( ls.zeisel, lib.sf.zeisel, log = "xy", xlab = "Library size", ylab = "Size factor")
ls.zeisel
and lib.sf.zeisel
identical?Are ls.zeisel
and lib.sf.zeisel
identical?
Are they proportional?
Are ls.zeisel
and lib.sf.zeisel
identical?
Are they proportional?
Compute lib.sf.zeisel
manually
?scater::librarySizeFactors
Check the Details at ?scater::librarySizeFactors
Compute the size factors manually
## First compute the sumszeisel_sums <- colSums(counts(sce.zeisel))identical(zeisel_sums, ls.zeisel)
## [1] TRUE
## Next, make them have unity meanzeisel_size_factors <- zeisel_sums/mean(zeisel_sums)identical(zeisel_size_factors, lib.sf.zeisel)
## [1] TRUE
Check the Details at ?scater::librarySizeFactors
Compute the size factors manually
## First compute the sumszeisel_sums <- colSums(counts(sce.zeisel))identical(zeisel_sums, ls.zeisel)
## [1] TRUE
## Next, make them have unity meanzeisel_size_factors <- zeisel_sums/mean(zeisel_sums)identical(zeisel_size_factors, lib.sf.zeisel)
## [1] TRUE
# Normalization by convolutionlibrary('scran')# Pre-clusteringset.seed(100)clust.zeisel <- quickCluster(sce.zeisel)# Compute deconvolution size factorsdeconv.sf.zeisel <- calculateSumFactors(sce.zeisel, clusters = clust.zeisel, min.mean = 0.1)# Examine distribution of size factorssummary(deconv.sf.zeisel)
## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.1282 0.4859 0.8248 1.0000 1.3194 4.6521
hist(log10(deconv.sf.zeisel), xlab = "Log10[Size factor]", col = "grey80")
plot( ls.zeisel, deconv.sf.zeisel, log = "xy", xlab = "Library size", ylab = "Size factor")
How many quick clusters did we get?
How many cells per quick cluster did we get?
How many quick clusters did we get?
How many cells per quick cluster did we get?
How many quick clusters will we get if we set the minimum size to 200? Use 100 as the seed.
How many quick clusters did we get?
How many cells per quick cluster did we get?
How many quick clusters will we get if we set the minimum size to 200? Use 100 as the seed.
How many lines do you see?
sort(table(clust.zeisel))
set.seed(100); sort(table(quickCluster(sce.zeisel, min.size = 200)))
table(factor(sce.zeisel$level1class))
# Library size factors vs. convolution size factors# Colouring points using the supplied cell-typesplot( lib.sf.zeisel, deconv.sf.zeisel, xlab = "Library size factor", ylab = "Deconvolution size factor", log = 'xy', pch = 16, col = as.integer(factor(sce.zeisel$level1class)))abline(a = 0, b = 1, col = "red")
Slides created via the R package xaringan and themed with xaringanthemer.
This course is based on the book Orchestrating Single Cell Analysis with Bioconductor by Aaron Lun, Robert Amezquita, Stephanie Hicks and Raphael Gottardo, plus WEHI's scRNA-seq course by Peter Hickey.
You can find the files for this course at lcolladotor/osca_LIIGH_UNAM_2020.
Instructor: Leonardo Collado-Torres.
Download the materials for this course with usethis::use_course('lcolladotor/osca_LIIGH_UNAM_2020')
or view online at lcolladotor.github.io/osca_LIIGH_UNAM_2020.
options(width = 120)sessioninfo::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────## setting value ## version R version 3.6.3 (2020-02-29)## os macOS Catalina 10.15.3 ## system x86_64, darwin15.6.0 ## ui X11 ## language (EN) ## collate en_US.UTF-8 ## ctype en_US.UTF-8 ## tz America/New_York ## date 2020-03-23 ## ## ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────## package * version date lib source ## AnnotationDbi * 1.48.0 2019-10-29 [1] Bioconductor ## AnnotationFilter * 1.10.0 2019-10-29 [1] Bioconductor ## AnnotationHub 2.18.0 2019-10-29 [1] Bioconductor ## askpass 1.1 2019-01-13 [1] CRAN (R 3.6.0) ## assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.0) ## beeswarm 0.2.3 2016-04-25 [1] CRAN (R 3.6.0) ## Biobase * 2.46.0 2019-10-29 [1] Bioconductor ## BiocFileCache 1.10.2 2019-11-08 [1] Bioconductor ## BiocGenerics * 0.32.0 2019-10-29 [1] Bioconductor ## BiocManager 1.30.10 2019-11-16 [1] CRAN (R 3.6.1) ## BiocNeighbors 1.4.2 2020-02-29 [1] Bioconductor ## BiocParallel * 1.20.1 2019-12-21 [1] Bioconductor ## BiocSingular 1.2.2 2020-02-14 [1] Bioconductor ## BiocVersion 3.10.1 2019-06-06 [1] Bioconductor ## biomaRt 2.42.0 2019-10-29 [1] Bioconductor ## Biostrings 2.54.0 2019-10-29 [1] Bioconductor ## bit 1.1-15.2 2020-02-10 [1] CRAN (R 3.6.0) ## bit64 0.9-7 2017-05-08 [1] CRAN (R 3.6.0) ## bitops 1.0-6 2013-08-17 [1] CRAN (R 3.6.0) ## blob 1.2.1 2020-01-20 [1] CRAN (R 3.6.0) ## cli 2.0.2 2020-02-28 [1] CRAN (R 3.6.0) ## codetools 0.2-16 2018-12-24 [1] CRAN (R 3.6.3) ## colorout * 1.2-1 2019-05-07 [1] Github (jalvesaq/colorout@7ea9440) ## colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.0) ## crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.0) ## curl 4.3 2019-12-02 [1] CRAN (R 3.6.0) ## DBI 1.1.0 2019-12-15 [1] CRAN (R 3.6.0) ## dbplyr 1.4.2 2019-06-17 [1] CRAN (R 3.6.0) ## DelayedArray * 0.12.2 2020-01-06 [1] Bioconductor ## DelayedMatrixStats 1.8.0 2019-10-29 [1] Bioconductor ## digest 0.6.25 2020-02-23 [1] CRAN (R 3.6.0) ## dplyr 0.8.5 2020-03-07 [1] CRAN (R 3.6.0) ## dqrng 0.2.1 2019-05-17 [1] CRAN (R 3.6.0) ## edgeR 3.28.1 2020-02-26 [1] Bioconductor ## ensembldb * 2.10.2 2019-11-20 [1] Bioconductor ## evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.0) ## ExperimentHub 1.12.0 2019-10-29 [1] Bioconductor ## fansi 0.4.1 2020-01-08 [1] CRAN (R 3.6.0) ## fastmap 1.0.1 2019-10-08 [1] CRAN (R 3.6.0) ## GenomeInfoDb * 1.22.0 2019-10-29 [1] Bioconductor ## GenomeInfoDbData 1.2.2 2019-10-31 [1] Bioconductor ## GenomicAlignments 1.22.1 2019-11-12 [1] Bioconductor ## GenomicFeatures * 1.38.2 2020-02-15 [1] Bioconductor ## GenomicRanges * 1.38.0 2019-10-29 [1] Bioconductor ## ggbeeswarm 0.6.0 2017-08-07 [1] CRAN (R 3.6.0) ## ggplot2 * 3.3.0 2020-03-05 [1] CRAN (R 3.6.0) ## glue 1.3.2 2020-03-12 [1] CRAN (R 3.6.0) ## gridExtra 2.3 2017-09-09 [1] CRAN (R 3.6.0) ## gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.0) ## hms 0.5.3 2020-01-08 [1] CRAN (R 3.6.0) ## htmltools 0.4.0 2019-10-04 [1] CRAN (R 3.6.0) ## httpuv 1.5.2 2019-09-11 [1] CRAN (R 3.6.0) ## httr 1.4.1 2019-08-05 [1] CRAN (R 3.6.0) ## igraph 1.2.5 2020-03-19 [1] CRAN (R 3.6.0) ## interactiveDisplayBase 1.24.0 2019-10-29 [1] Bioconductor ## IRanges * 2.20.2 2020-01-13 [1] Bioconductor ## irlba 2.3.3 2019-02-05 [1] CRAN (R 3.6.0) ## knitr 1.28 2020-02-06 [1] CRAN (R 3.6.0) ## later 1.0.0 2019-10-04 [1] CRAN (R 3.6.0) ## lattice 0.20-40 2020-02-19 [1] CRAN (R 3.6.0) ## lazyeval 0.2.2 2019-03-15 [1] CRAN (R 3.6.0) ## lifecycle 0.2.0 2020-03-06 [1] CRAN (R 3.6.0) ## limma 3.42.2 2020-02-03 [1] Bioconductor ## locfit 1.5-9.1 2013-04-20 [1] CRAN (R 3.6.0) ## magrittr 1.5 2014-11-22 [1] CRAN (R 3.6.0) ## Matrix 1.2-18 2019-11-27 [1] CRAN (R 3.6.3) ## matrixStats * 0.56.0 2020-03-13 [1] CRAN (R 3.6.0) ## memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.0) ## mime 0.9 2020-02-04 [1] CRAN (R 3.6.0) ## munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.0) ## openssl 1.4.1 2019-07-18 [1] CRAN (R 3.6.0) ## pillar 1.4.3 2019-12-20 [1] CRAN (R 3.6.0) ## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.1) ## prettyunits 1.1.1 2020-01-24 [1] CRAN (R 3.6.2) ## progress 1.2.2 2019-05-16 [1] CRAN (R 3.6.0) ## promises 1.1.0 2019-10-04 [1] CRAN (R 3.6.0) ## ProtGenerics 1.18.0 2019-10-29 [1] Bioconductor ## purrr 0.3.3 2019-10-18 [1] CRAN (R 3.6.0) ## R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.1) ## rappdirs 0.3.1 2016-03-28 [1] CRAN (R 3.6.0) ## Rcpp 1.0.4 2020-03-17 [1] CRAN (R 3.6.0) ## RCurl 1.98-1.1 2020-01-19 [1] CRAN (R 3.6.0) ## rlang 0.4.5 2020-03-01 [1] CRAN (R 3.6.0) ## rmarkdown 2.1 2020-01-20 [1] CRAN (R 3.6.0) ## Rsamtools 2.2.3 2020-02-23 [1] Bioconductor ## RSQLite 2.2.0 2020-01-07 [1] CRAN (R 3.6.0) ## rstudioapi 0.11 2020-02-07 [1] CRAN (R 3.6.0) ## rsvd 1.0.3 2020-02-17 [1] CRAN (R 3.6.0) ## rtracklayer 1.46.0 2019-10-29 [1] Bioconductor ## S4Vectors * 0.24.3 2020-01-18 [1] Bioconductor ## scales 1.1.0 2019-11-18 [1] CRAN (R 3.6.1) ## scater * 1.14.6 2019-12-16 [1] Bioconductor ## scran * 1.14.6 2020-02-03 [1] Bioconductor ## scRNAseq * 2.0.2 2019-11-12 [1] Bioconductor ## sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.0) ## shiny 1.4.0.2 2020-03-13 [1] CRAN (R 3.6.0) ## SingleCellExperiment * 1.8.0 2019-10-29 [1] Bioconductor ## statmod 1.4.34 2020-02-17 [1] CRAN (R 3.6.0) ## stringi 1.4.6 2020-02-17 [1] CRAN (R 3.6.0) ## stringr 1.4.0 2019-02-10 [1] CRAN (R 3.6.0) ## SummarizedExperiment * 1.16.1 2019-12-19 [1] Bioconductor ## tibble 2.1.3 2019-06-06 [1] CRAN (R 3.6.0) ## tidyselect 1.0.0 2020-01-27 [1] CRAN (R 3.6.0) ## vctrs 0.2.4 2020-03-10 [1] CRAN (R 3.6.0) ## vipor 0.4.5 2017-03-22 [1] CRAN (R 3.6.0) ## viridis 0.5.1 2018-03-29 [1] CRAN (R 3.6.0) ## viridisLite 0.3.0 2018-02-01 [1] CRAN (R 3.6.0) ## withr 2.1.2 2018-03-15 [1] CRAN (R 3.6.0) ## xaringan 0.15 2020-03-04 [1] CRAN (R 3.6.3) ## xaringanthemer * 0.2.0 2020-03-22 [1] Github (gadenbuie/xaringanthemer@460f441)## xfun 0.12 2020-01-13 [1] CRAN (R 3.6.0) ## XML 3.99-0.3 2020-01-20 [1] CRAN (R 3.6.0) ## xtable 1.8-4 2019-04-21 [1] CRAN (R 3.6.0) ## XVector 0.26.0 2019-10-29 [1] Bioconductor ## yaml 2.2.1 2020-02-01 [1] CRAN (R 3.6.0) ## zlibbioc 1.32.0 2019-10-29 [1] Bioconductor ## ## [1] /Library/Frameworks/R.framework/Versions/3.6/Resources/library
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Download the materials for this course with usethis::use_course('lcolladotor/osca_LIIGH_UNAM_2020')
or view online at lcolladotor.github.io/osca_LIIGH_UNAM_2020.
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |