Analysis of gene expression in the postmortem brain of neurotypical Black Americans reveals contributions of genetic ancestry.

Image credit: bioRxiv

Abstract

Ancestral differences in genomic variation affect the regulation of gene expression; however, most gene expression studies have been limited to European ancestry samples or adjusted to identify ancestry-independent associations. Here, we instead examined the impact of genetic ancestry on gene expression and DNA methylation in the postmortem brain tissue of admixed Black American neurotypical individuals to identify ancestry-dependent and ancestry-independent contributions. Ancestry-associated differentially expressed genes (DEGs), transcripts and gene networks, while notably not implicating neurons, are enriched for genes related to the immune response and vascular tissue and explain up to 26% of heritability for ischemic stroke, 27% of heritability for Parkinson disease and 30% of heritability for Alzheimer’s disease. Ancestry-associated DEGs also show general enrichment for the heritability of diverse immune-related traits but depletion for psychiatric-related traits. We also compared Black and non-Hispanic white Americans, confirming most ancestry-associated DEGs. Our results delineate the extent to which genetic ancestry affects differences in gene expression in the human brain and the implications for brain illness risk.

Publication
Nature Neuroscience
Nicholas J. Eagles
Nicholas J. Eagles
Research Assistant 2018-2021, Research Associate I 2021-2024, Research Associate II 2024-ongoing
Louise A. Huuki-Myers
Louise A. Huuki-Myers
Research Associate 2020-2022, Staff Scientist I, Data Science 2022-ongoing, PhD Student 2024-ongoing
Leonardo Collado-Torres
Leonardo Collado-Torres
Investigator @ LIBD, Assistant Professor, Department of Biostatistics @ JHBSPH

#rstats @Bioconductor/🧠 genomics @LieberInstitute/@lcgunam @jhubiostat @jtleek @andrewejaffe alumni/@LIBDrstats @CDSBMexico co-founder

Joshua M. Stolz
Joshua M. Stolz
Research Associate 2018-2022